• Solution -「CodeChef JUMP」Jump Mission


    (mathcal{Description})

      Link.

      有 (n) 个编号 (1sim n) 的格子排成一排,并有三个权值序列 ({a_n},{h_n},{p_n}),其中 ({p_n}) 是一个排列。从 (i) 跳到 (j),必须满足 (i<jland p_i<p_j),代价为 ((h_i-h_j)^2+a_j),求从 (1) 跳到 (n) 的最小代价。

      (n,h_ile6 imes10^5)

    (mathcal{Solution})

      不就是个板子套板子吗你还水题解。

      设 (f(i)) 表示从 (1) 跳到 (i) 的最小代价,显然

    [egin{aligned}f(i) &= min_{j<i,p_j<p_i}{f(j)+a_i+(h_i-h_j)^2}\&= a_i+h_i^2+min_{j<i,p_j<p_i}{f(j)+h_j^2-2h_ih_j}.end{aligned} ]

    转移条件是二维偏序关系,反手一个 CDQ,转移最优化的是一次函数,再丢一个李超树,复杂度 (mathcal O(nlog nlog h))

      比树套树好写不知道多少,而且跑得飞快。

    (mathcal{Code})

    /*~Rainybunny~*/
    
    #include <bits/stdc++.h>
    
    #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
    #define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
    
    inline char fgc() {
        static char buf[1 << 17], *p = buf, *q = buf;
        return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
          ? EOF : *p++;
    }
    
    inline int rint() {
        int x = 0, f = 1, s = fgc();
        for ( ; s < '0' || '9' < s; s = fgc() ) f = s == '-' ? -f : f;
        for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
        return x * f;
    }
    
    typedef long long LL;
    
    inline void chkmin( LL& a, const LL b ) { b < a && ( a = b ); }
    
    const int MAXN = 6e5;
    const LL LINF = 1ll << 60;
    int n, mxh, h[MAXN + 5], p[MAXN + 5], a[MAXN + 5];
    LL f[MAXN + 5];
    std::vector<int> ord[MAXN * 2 + 5];
    
    struct Line {
        LL k, b;
        inline LL operator () ( const int x ) { return k * x + b; }
    };
    
    struct SegmentTree {
        Line line[MAXN + 5];
        int lcnt, vers, ver[MAXN << 2], idx[MAXN << 2];
    
        inline void clear() { lcnt = 0, ++vers; }
    
        inline void insert( const int u, const int l, const int r, int id ) {
            if ( ver[u] != vers ) return idx[u] = id, ver[u] = vers, void();
            int mid = l + r >> 1;
            if ( line[idx[u]]( mid ) > line[id]( mid ) ) std::swap( idx[u], id );
            if ( l == r ) return ;
            if ( line[idx[u]]( l ) > line[id]( l ) ) {
                insert( u << 1, l, mid, id );
            } else if ( line[idx[u]]( r ) > line[id]( r ) ) {
                insert( u << 1 | 1, mid + 1, r, id );
            }
        }
    
        inline void insert( const Line& l ) {
            line[++lcnt] = l, insert( 1, 1, mxh, lcnt );
        }
    
        inline LL query( const int u, const int l, const int r, const int x ) {
            if ( ver[u] != vers ) return LINF;
            LL ret = line[idx[u]]( x );
            if ( l == r ) return ret;
            int mid = l + r >> 1;
            if ( x <= mid ) chkmin( ret, query( u << 1, l, mid, x ) );
            else chkmin( ret, query( u << 1 | 1, mid + 1, r, x ) );
            return ret;
        }
    } sgt;
    
    #define id( l, r ) ( ( l + r ) | ( l != r ) )
    inline void build( const int l, const int r ) {
        int u = id( l, r ); ord[u].resize( r - l + 1 );
        if ( l == r ) return void( ord[u][0] = l );
        int mid = l + r >> 1, lc = id( l, mid ), rc = id( mid + 1, r );
        build( l, mid ), build( mid + 1, r );
        std::merge( ord[lc].begin(), ord[lc].end(), ord[rc].begin(), ord[rc].end(),
          ord[u].begin(), []( const int x, const int y ) { return p[x] < p[y]; } );
    }
    
    inline void solve( const int l, const int r ) {
        if ( l == r ) return ;
        int mid = l + r >> 1;
        solve( l, mid ), sgt.clear();
        for ( int u: ord[id( l, r )] ) {
            if ( u <= mid && f[u] != LINF ) {
                sgt.insert( { -2ll * h[u], 1ll * h[u] * h[u] + f[u] } );
            } else if ( u > mid ) {
                chkmin( f[u], 1ll * h[u] * h[u] + a[u]
                  + sgt.query( 1, 1, mxh, h[u] ) );
            }
        }
        solve( mid + 1, r );
    }
    #undef id
    
    int main() {
        n = rint();
        rep ( i, 1, n ) p[i] = rint();
        rep ( i, 1, n ) a[i] = rint();
        rep ( i, 1, n ) h[i] = rint(), mxh = std::max( mxh, h[i] );
    
        f[1] = a[1];
        rep ( i, 2, n ) f[i] = LINF;
        build( 1, n ), solve( 1, n );
        printf( "%lld
    ", f[n] );
        return 0;
    }
    
    
  • 相关阅读:
    js实现中文转拼音
    JS中的call、apply、bind方法
    python 过滤html方法
    css 多出一行或多行后显示...的方法
    js 中文排序
    eclipse小技巧
    npm安装及webpack打包小demo
    zan扩展安装
    vagrant安装centos7
    centos7 nginx访问目录403解决
  • 原文地址:https://www.cnblogs.com/rainybunny/p/15194136.html
Copyright © 2020-2023  润新知