(mathcal{Description})
Link.
给定一张 (n imes m) 的表格,每个格子上写有一个小写字母。求其中长宽至少为 (2),且边界格子上字母相同的矩形个数。
(n,mle2 imes10^3)。
(mathcal{Solution})
可以感知到这是道分治题。
不妨设当前处理左上角 ((u,l)),右下角 ((d,r)) 的矩形内的所有答案,且 (d-u>r-l)。那么取行的一半 (p=lfloorfrac{u+d}{2} floor),尝试求出所有在矩形内且跨过 (p) 这条水平直线的矩形数量。对于 (p) 上的每个点 ((p,i)),预处理出其 向上/向下 走到的同种格子中,有多少个能 向左/向右 走 (x) 步,然后枚举矩形跨过 (p) 的两个位置 (i,j),讨论 (i,j) 向上/向下 能走步数的大小关系,利用预处理的信息计算答案。
这样每层做到 (mathcal O((d-u)(r-l))),所以总复杂度 (mathcal O(nm(log n+log m)))。
(mathcal{Code})
/*~Rainybunny~*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }
const int MAXN = 2e3;
int n, m;
int up[MAXN + 5][MAXN + 5], dn[MAXN + 5][MAXN + 5];
int le[MAXN + 5][MAXN + 5], ri[MAXN + 5][MAXN + 5];
int sum[MAXN + 5][MAXN + 5][4];
char grid[MAXN + 5][MAXN + 5];
LL ans;
inline void solve( const int u, const int d, const int l, const int r ) {
if ( u + 1 > d || l + 1 > r ) return ;
if ( d - u > r - l ) {
int mr = u + d >> 1, lr = r - l + 1;
solve( u, mr, l, r ), solve( mr + 1, d, l, r );
rep ( i, l, r ) rep ( j, 0, lr ) {
sum[i][j][0] = sum[i][j][1] = sum[i][j][2] = sum[i][j][3] = 0;
}
rep ( i, l, r ) {
rep ( j, imax( u, mr - up[mr][i] + 1 ),
imin( d, mr + dn[mr][i] - 1 ) ) {
++sum[i][imin( ri[j][i], lr )][( mr < j ) * 2];
++sum[i][imin( le[j][i], lr )][( mr < j ) * 2 + 1];
}
per ( j, lr - 1, 0 ) rep ( k, 0, 3 ) {
sum[i][j][k] += sum[i][j + 1][k];
}
}
rep ( i, l, r ) rep ( j, i + 1, r ) {
if ( grid[mr][i] == grid[mr][j] ) {
ans += 1ll *
( up[mr][i] < up[mr][j] ?
sum[i][j - i + 1][0] : sum[j][j - i + 1][1] ) *
( dn[mr][i] < dn[mr][j] ?
sum[i][j - i + 1][2] : sum[j][j - i + 1][3] );
}
}
} else {
int mc = l + r >> 1, ud = d - u + 1;
solve( u, d, l, mc ), solve( u, d, mc + 1, r );
rep ( i, u, d ) rep ( j, 0, ud ) {
sum[i][j][0] = sum[i][j][1] = sum[i][j][2] = sum[i][j][3] = 0;
}
rep ( i, u, d ) {
rep ( j, imax( l, mc - le[i][mc] + 1 ),
imin( r, mc + ri[i][mc] - 1 ) ) {
++sum[i][imin( dn[i][j], ud )][( mc < j ) * 2];
++sum[i][imin( up[i][j], ud )][( mc < j ) * 2 + 1];
}
per ( j, ud - 1, 0 ) rep ( k, 0, 3 ) {
sum[i][j][k] += sum[i][j + 1][k];
}
}
rep ( i, u, d ) rep ( j, i + 1, d ) {
if ( grid[i][mc] == grid[j][mc] ) {
ans += 1ll *
( le[i][mc] < le[j][mc] ?
sum[i][j - i + 1][0] : sum[j][j - i + 1][1] ) *
( ri[i][mc] < ri[j][mc] ?
sum[i][j - i + 1][2] : sum[j][j - i + 1][3] );
}
}
}
}
int main() {
scanf( "%d %d", &n, &m );
rep ( i, 1, n ) scanf( "%s", grid[i] + 1 );
rep ( i, 1, n ) rep ( j, 1, m ) {
le[i][j] = grid[i][j] == grid[i][j - 1] ? le[i][j - 1] + 1 : 1;
up[i][j] = grid[i][j] == grid[i - 1][j] ? up[i - 1][j] + 1 : 1;
}
per ( i, n, 1 ) per ( j, m, 1 ) {
ri[i][j] = grid[i][j] == grid[i][j + 1] ? ri[i][j + 1] + 1 : 1;
dn[i][j] = grid[i][j] == grid[i + 1][j] ? dn[i + 1][j] + 1 : 1;
}
solve( 1, n, 1, m );
printf( "%lld
", ans );
return 0;
}