• Solution -「集训队作业 2013」「洛谷 P4841」城市规划


    (mathcal{Description})

      link.
      求 (n) 个结点的简单无向连通图个数,对 (1004535809~(479 imes2^{21}+1)) 取模。
      (nle1.3 imes10^5)

    (mathcal{Solution})

      很简单的一道生成函数题。做完之后可以尝试一下点双和边双连通图计数 w。
      令 (f_i)(i) 个结点的简单无向图个数。显然 (f_i=2^{ichoose 2})。则其生成函数 (F(x)) 有:

    [F(x)=sum_{i=0}^{+infty}frac{2^{ichoose2}x^i}{i!} ]

      考虑任意一个简单无向图肯定是由多个互相独立的简单无向连通图拼接而成。若 (G(x))无向连通图的生成函数,则应有 (F(x)=exp G(x))。那么反过来,(G(x)=ln F(x))。求出 (F(x)),然后多项式求 (ln) 即可。
      复杂度 (mathcal O(nlog n))

    (mathcal{Code})

    #include <cmath>
    #include <cstdio>
    
    const int MAXN = 1 << 18, MOD = 1004535809;
    int n, len, inv[MAXN + 5], fac[MAXN + 5], ifac[MAXN + 5], F[MAXN + 5], G[MAXN + 5];
    
    inline int qkpow ( int a, int b, const int p = MOD ) {
    	int ret = 1;
    	for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
    	return ret;
    }
    
    namespace Poly {
    
    const int G = 3;
    
    inline int adjust ( const int n ) {
    	int ret = 0;
    	for ( int l = 1; l < n; l <<= 1, ++ ret );
    	return ret;
    }
    
    inline void NTT ( const int n, int* A, const int tp ) {
    	static int lstn = -1, rev[MAXN + 5] {};
    	if ( lstn ^ n ) {
    		int lgn = log ( n ) / log ( 2 ) + 0.5;
    		for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
    		lstn = n;
    	}
    	for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
    	for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
    		int w = qkpow ( G, ( MOD - 1 ) / i );
    		if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
    		for ( int j = 0; j < n; j += i ) {
    			for ( int k = j, r = 1; k < j + stp; ++ k, r = 1ll * r * w % MOD ) {
    				int ev = A[k], ov = 1ll * r * A[k + stp] % MOD;
    				A[k] = ( ev + ov ) % MOD, A[k + stp] = ( ev - ov + MOD ) % MOD;
    			}
    		}
    	}
    	if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = 1ll * A[i] * inv[n] % MOD;
    }
    
    inline void polyDer ( const int n, const int* A, int* R ) {
    	for ( int i = 1; i < n; ++ i ) R[i - 1] = 1ll * i * A[i] % MOD;
    	R[n - 1] = 0;
    }
    
    inline void polyInt ( const int n, const int* A, int* R ) {
    	for ( int i = n - 1; ~ i; -- i ) R[i + 1] = 1ll * inv[i + 1] * A[i] % MOD;
    	R[0] = 0;
    }
    
    inline void polyInv ( const int n, const int* A, int* R ) {
    	static int tmp[MAXN + 5] {};
    	if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
    	int len = 1 << adjust ( n << 1 );
    	polyInv ( n + 1 >> 1, A, R );
    	for ( int i = 0; i < n; ++ i ) tmp[i] = A[i];
    	NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
    	for ( int i = 0; i < len; ++ i ) R[i] = ( 2 - 1ll * tmp[i] * R[i] % MOD + MOD ) % MOD * R[i] % MOD, tmp[i] = 0;
    	NTT ( len, R, -1 );
    	for ( int i = n; i < len; ++ i ) R[i] = 0;
    }
    
    inline void polyLn ( const int n, const int* A, int* R ) {
    	static int tmp[2][MAXN + 5] {};
    	int len = 1 << adjust ( n << 1 );
    	polyDer ( n, A, tmp[0] ), polyInv ( n, A, tmp[1] );
    	NTT ( len, tmp[0], 1 ), NTT ( len, tmp[1], 1 );
    	for ( int i = 0; i < len; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD;
    	NTT ( len, tmp[0], -1 ), polyInt ( n, tmp[0], R );
    	for ( int i = 0; i < len; ++ i ) tmp[0][i] = tmp[1][i] = 0;
    	for ( int i = n; i < len; ++ i ) R[i] = 0;
    }
    
    inline void polyExp ( const int n, const int* A, int* R ) {
    	static int tmp[MAXN + 5] {};
    	if ( n == 1 ) return void ( R[0] = 1 );
    	int len = 1 << adjust ( n << 1 );
    	polyExp ( n + 1 >> 1, A, R ), polyLn ( n, R, tmp );
    	tmp[0] = ( A[0] + 1 - tmp[0] + MOD ) % MOD;
    	for ( int i = 1; i < n; ++ i ) tmp[i] = ( A[i] - tmp[i] + MOD ) % MOD;
    	NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
    	for ( int i = 0; i < len; ++ i ) R[i] = 1ll * R[i] * tmp[i] % MOD, tmp[i] = 0;
    	NTT ( len, R, -1 );
    	for ( int i = n; i < len; ++ i ) R[i] = 0;
    }
    
    } // namespace Poly.
    
    inline void init () {
    	len = 1 << Poly::adjust ( n + 1 );
    	inv[1] = fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
    	for ( int i = 2; i <= len << 1; ++ i ) {
    		fac[i] = 1ll * i * fac[i - 1] % MOD;
    		inv[i] = 1ll * ( MOD - MOD / i ) * inv[MOD % i] % MOD;
    		ifac[i] = 1ll * inv[i] * ifac[i - 1] % MOD;
    	}
    }
    
    int main () {
    	scanf ( "%d", &n ), init ();
    	for ( int i = 0; i < len; ++ i ) F[i] = 1ll * qkpow ( 2, ( i * ( i - 1ll ) >> 1 ) % ( MOD - 1 ) ) * ifac[i] % MOD;
    	Poly::polyLn ( len, F, G );
    	printf ( "%d
    ", int ( 1ll * G[n] * fac[n] % MOD ) );
    	return 0;
    }
    
  • 相关阅读:
    css中的display以及position属性
    有人退税近4000元!个税年度汇算开始了,看看你能退多少?
    多维竞争
    阿里智能化接口测试平台--暴雪
    盗版网课有多猖狂?原价上万,只卖5元
    测试找BUG总结
    女程序员做了个梦。。。
    混沌的市场里,怎么一眼识别出「好房子」
    知乎扎心高赞:30岁还没有走到管理岗的人,后来怎么样了?
    自动化是在敏捷中提供连续测试的唯一方法
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13288051.html
Copyright © 2020-2023  润新知