• Solution -「洛谷 P5827」边双连通图计数


    (mathcal{Description})

      link.
      求包含 (n) 个点的边双连通图的个数。
      (nle10^5)

    (mathcal{Solution})

      类似于这道题,仍令 (D(x)) 为有根无向连通图的 ( ext{EGF})(B(x)) 为边双连通图的 ( ext{EGF}),考虑用 (B) 表示 (D)。显然,根仅存在于一个边双连通分量中。我们可以在这个连通分量的任意一个点上挂一个有根连通图,这显然不会影响当前的边双,( ext{EGF})(nD(x))(n) 为根所在边双大小。)事实上可以挂许多图,所以处根所在边双以外的 ( ext{EGF})(expleft(nD(x) ight))。枚举根所在边双大小,就有:

    [D(x)=sum_{i=1}^{+infty}frac{b_ix^iexpleft(iD(x) ight)}{i!}=Bleft(xexp D(x) ight) ]

      令 (F(x)=xexp D(x))(F^{-1}(x)) 为其复合逆。将 (F^{-1}(x)) 代入上式得:

    [B(x)=Dleft(F^{-1}(x) ight) ]

      扩展拉格朗日反演:

    [[x^n]B(x)=frac{1}n[x^{n-1}]D'(x)left(frac{x}{F(x)} ight)^n ]

      重新展开 (F),化简得:

    [[x^n]B(x)=frac{1}n[x^{n-1}]D'(x)expleft(-nD(x) ight) ]

      求出 (D),继而求出 ([x^n]B(x))。复杂度 (mathcal O(nlog n))

    (mathcal{Code})

    #include <cmath>
    #include <cstdio>
    
    const int MAXN = 1 << 18, MOD = 998244353;
    int n, fac[MAXN + 5], ifac[MAXN + 5], inv[MAXN + 5];
    int F[MAXN + 5], G[MAXN + 5], H[MAXN + 5], T[MAXN + 5];
    
    inline int qkpow ( int a, int b, const int p = MOD ) {
    	int ret = 1;
    	for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
    	return ret;
    }
    
    namespace Poly {
    
    const int G = 3;
    
    inline void NTT ( const int n, int* A, const int tp ) {
    	static int lstn = -1, rev[MAXN + 5] {};
    	if ( lstn ^ n ) {
    		int lgn = log ( n ) / log ( 2 ) + 0.5;
    		for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
    		lstn = n;
    	}
    	for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
    	for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
    		int w = qkpow ( G, ( MOD - 1 ) / i );
    		if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
    		for ( int j = 0; j < n; j += i ) {
    			for ( int k = j, r = 1; k < j + stp; ++ k, r = 1ll * r * w % MOD ) {
    				int ev = A[k], ov = 1ll * r * A[k + stp] % MOD;
    				A[k] = ( ev + ov ) % MOD, A[k + stp] = ( ev - ov + MOD ) % MOD;
    			}
    		}
    	}
    	if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = 1ll * A[i] * inv[n] % MOD;
    }
    
    inline void polyDer ( const int n, const int* A, int* R ) {
    	for ( int i = 1; i < n; ++ i ) R[i - 1] = 1ll * i * A[i] % MOD;
    	R[n - 1] = 0;
    }
    
    inline void polyInt ( const int n, const int* A, int* R ) {
    	for ( int i = n - 1; ~ i; -- i ) R[i + 1] = 1ll * inv[i + 1] * A[i] % MOD;
    	R[0] = 0;
    }
    
    inline void polyInv ( const int n, const int* A, int* R ) {
    	static int tmp[2][MAXN + 5] {};
    	if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
    	polyInv ( n >> 1, A, R );
    	for ( int i = 0; i < n; ++ i ) tmp[0][i] = A[i], tmp[1][i] = R[i];
    	NTT ( n << 1, tmp[0], 1 ), NTT ( n << 1, tmp[1], 1 );
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD * tmp[1][i] % MOD;
    	NTT ( n << 1, tmp[0], -1 );
    	for ( int i = 0; i < n; ++ i ) R[i] = ( 2ll * R[i] % MOD - tmp[0][i] + MOD ) % MOD;
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = tmp[1][i] = 0;
    }
    
    inline void polyLn ( const int n, const int* A, int* R ) {
    	static int tmp[2][MAXN + 5] {};
    	polyDer ( n, A, tmp[0] ), polyInv ( n, A, tmp[1] );
    	NTT ( n << 1, tmp[0], 1 ), NTT ( n << 1, tmp[1], 1 );
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD;
    	NTT ( n << 1, tmp[0], -1 ), polyInt ( n << 1, tmp[0], R );
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = tmp[1][i] = 0;
    }
    
    inline void polyExp ( const int n, const int* A, int* R ) {
    	static int tmp[MAXN + 5] {};
    	if ( n == 1 ) return void ( R[0] = 1 );
    	polyExp ( n >> 1, A, R ), polyLn ( n, R, tmp );
    	tmp[0] = ( A[0] + 1 - tmp[0] + MOD ) % MOD;
    	for ( int i = 1; i < n; ++ i ) tmp[i] = ( A[i] - tmp[i] + MOD ) % MOD;
    	NTT ( n << 1, tmp, 1 ), NTT ( n << 1, R, 1 );
    	for ( int i = 0; i < n << 1; ++ i ) R[i] = 1ll * R[i] * tmp[i] % MOD;
    	NTT ( n << 1, R, -1 );
    	for ( int i = n; i < n << 1; ++ i ) R[i] = tmp[i] = 0;
    }
    
    } // namespace Poly.
    
    inline void init () {
    	int len = MAXN >> 1;
    	inv[1] = fac[0] = ifac[0] = fac[1] = ifac[1] = 1;
    	for ( int i = 2; i <= MAXN; ++ i ) {
    		fac[i] = 1ll * i * fac[i - 1] % MOD;
    		inv[i] = 1ll * ( MOD - MOD / i ) * inv[MOD % i] % MOD;
    		ifac[i] = 1ll * inv[i] * ifac[i - 1] % MOD;
    	}
    	for ( int i = 0; i < len; ++ i ) F[i] = 1ll * qkpow ( 2, ( i * ( i - 1ll ) >> 1 ) % ( MOD - 1 ) ) * ifac[i] % MOD;
    	Poly::polyLn ( len, F, G );
    	for ( int i = 0; i < len; ++ i ) G[i] = 1ll * G[i] * i % MOD;
    	Poly::polyDer ( len, G, H ), Poly::NTT ( MAXN, H, 1 );
    }
    
    inline void solve () {
    	int len = MAXN >> 1;
    	if ( n == 1 ) return void ( puts ( "1" ) );
    	for ( int i = 0; i < MAXN; ++ i ) F[i] = T[i] = 0;
    	for ( int i = 0; i < len; ++ i ) F[i] = 1ll * ( MOD - n ) % MOD * G[i] % MOD;
    	Poly::polyExp ( len, F, T ), Poly::NTT ( MAXN, T, 1 );
    	for ( int i = 0; i < MAXN; ++ i ) F[i] = 1ll * T[i] * H[i] % MOD;
    	Poly::NTT ( MAXN, F, -1 );
    	printf ( "%d
    ", int ( 1ll * inv[n] * fac[n - 1] % MOD * F[n - 1] % MOD ) );
    }
    
    int main () {
    	init ();
    	for ( int i = 1; i <= 5; ++ i ) scanf ( "%d", &n ), solve ();
    	return 0;
    }
    
  • 相关阅读:
    Nginx反向代理与负载均衡应用实践(一)
    Nginx基础详细讲解
    RabbitMQ
    GlusterFS
    AWK的使用
    Grep的过滤使用
    Sed的查,删,增,改
    jumpserver
    FTP
    hdu 3689 Infinite monkey theorem
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13283656.html
Copyright © 2020-2023  润新知