• AGC020E


    感觉只会抄题解。。

    AGC020E

    首先自己可以想到如果只是要单纯的求一个串的方案数可以区间 dp:观察这个表达式,可以写成

    f := g | g + f
    g := '0' | '1' | '(' + f + '*' + 'x' +  ')'
    

    其中 x 是一个数字,要求 (x>1),并且 (f)(g) 的一个长度为 (x) 的循环节。

    那么就可以根据上面的定义写出 dp 了:设 (f_{l,r},g_{l,r}) 表示区间 ([l,r]) 的答案,根据上面的定义可以得到转移:

    [egin{aligned} f_{l,r} &= g_{l,r}+sum_{i=l}^{r-1} g_{l,i}f_{i+1,r}\ g_{l,r} &=egin{cases} 1& l = r\ sum_{d|(r-l+1),d < r-l+1}[ ext{d 是 s[l,r] 的循环节}] f_{l,l+d-1}& ext{otherwise} end{cases}\ end{aligned} ]

    接下来就看题解了。

    题解里说,我们把状态改成 (f_s) 表示字符串 (s) 的所有子串的方案数,然后类似做就好了。这时候转移 (f) 就是枚举断开,(g) 就是枚举循环节,将所有长度为 (d) 的子串的按位与拿下去做。这样看起来十分暴力,但是我们可以推一下复杂度:设 (T_f(n)) 表示长度为 (n)(f) 的计算时间,(T_g(n)) 表示长度为 (n)(g) 计算时间,有(这里要注意 时间是相加不是相乘):

    [T_f(n) = sum_{i=1}^n (n-i+1)T_g(i)\ T_g(n) = sum_{d|n,d < n} T_f(d)\ Rightarrow T_f(n) = sum_{i=1}^n (n-i+1)sum_{d|i,d < i} T_f(d) ]

    注意这里第一行是乘 (n-i+1) 而不是加 (T_f(n-i)) 的原因 (f) 不会生成新的串,只会导致 (g) 被多算几遍,那么一个 (g) 会被枚举 (n-len+1) 次。这样大概运算是 29310258 反正能过(

    #include <bits/stdc++.h>
    
    #define fi first
    #define se second
    #define DB double
    #define U unsigned
    #define P std::pair
    #define LL long long
    #define LD long double
    #define pb push_back
    #define MP std::make_pair
    #define SZ(x) ((int)x.size())
    #define all(x) x.begin(),x.end()
    #define CLR(i,a) memset(i,a,sizeof(i))
    #define FOR(i,a,b) for(int i = a;i <= b;++i)
    #define ROF(i,a,b) for(int i = a;i >= b;--i)
    #define DEBUG(x) std::cerr << #x << '=' << x << std::endl
    
    const int MAXN = 100+5;
    const int ha = 998244353;
    std::string str;
    
    inline void add(int &x,int y){
        x += y-ha;x += x>>31&ha;
    }
    
    std::map<std::string,int> f,g;
    int F(std::string);
    int G(std::string);
    
    inline int F(std::string s){
        if(s.empty()) return 1;
        if(f.count(s)) return f[s];
        int res = 0;
        FOR(i,1,SZ(s)) add(res,1ll*G(s.substr(0,i))*F(s.substr(i,SZ(s)-i))%ha);
        f[s] = res;return res;
    }
    
    inline int G(std::string s){
        if(s.empty()) return 1;
        if(s == "0") return 1;
        if(s == "1") return 2;
        if(g.count(s)) return g[s];
        int res = 0;
        FOR(d,1,SZ(s)-1){
            if(SZ(s)%d) continue;
            std::string nxt="";
            FOR(i,0,d-1){
                bool flag = 1;
                for(int j = i;j < SZ(s);j += d) flag &= (s[j]=='1');
                if(flag) nxt += "1";
                else nxt += "0";
            }
            add(res,F(nxt));
        }
        return res;
    }
    
    int main(){
        std::cin >> str;
        printf("%d
    ",F(str));
        return 0;
    }
    
  • 相关阅读:
    Vue创建三:组件间bus传值
    vue创建二:引入本地图片
    Vue创建一:创建项目及样式引入
    jQuery源码解析之on事件绑定
    浏览器的同源策略与跨域处理
    常见的contentType编码类型【转】
    CSS预处理器Sass -- sass的基本语法(4)
    CSS预处理器Sass -- Sass工程的创建及sass文件编译(3)
    CSS预处理器Sass -- Sass、Less、Stylus比较(2)
    CSS预处理器Sass -- Sass、compass初识及其安装(1)
  • 原文地址:https://www.cnblogs.com/rainair/p/14305910.html
Copyright © 2020-2023  润新知