• Tensorflow 学习三 可视化


    下面是一个可视化的例子,网上还有一些其他版本的代码,在Tensorflow 2016年12月更新后需要修改才能使用。

    参照这个例子,为上一篇随笔中的softmax添加了可视化(更新到上一篇)。

    主要更新包括:

            "tf.train.SummaryWriter": "tf.summary.FileWriter",
            "tf.scalar_summary": "tf.summary.scalar",
            "tf.histogram_summary": "tf.summary.histogram",
            "tf.audio_summary": "tf.summary.audio",
            "tf.image_summary": "tf.summary.image",
            "tf.merge_summary": "tf.summary.merge",
            "tf.merge_all_summaries": "tf.summary.merge_all",

    代码来自https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py

    运行可能会报错Couldn't open CUDA library libcupti.so.8.0,需要把下面路径加到环境变量或者编译器环境。

    LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64
    # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the 'License');
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an 'AS IS' BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """A simple MNIST classifier which displays summaries in TensorBoard.
    
     This is an unimpressive MNIST model, but it is a good example of using
    tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
    naming summary tags so that they are grouped meaningfully in TensorBoard.
    
    It demonstrates the functionality of every TensorBoard dashboard.
    """
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import argparse
    import sys
    
    import tensorflow as tf
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    FLAGS = None
    
    
    def train():
      # Import data
      mnist = input_data.read_data_sets(FLAGS.data_dir,
                                        one_hot=True,
                                        fake_data=FLAGS.fake_data)
    
      sess = tf.InteractiveSession()
      # Create a multilayer model.
    
      # Input placeholders
      with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
    
      with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10)
    
      # We can't initialize these variables to 0 - the network will get stuck.
      def weight_variable(shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
      def bias_variable(shape):
        """Create a bias variable with appropriate initialization."""
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
      def variable_summaries(var):
        """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
        with tf.name_scope('summaries'):
          mean = tf.reduce_mean(var)
          tf.summary.scalar('mean', mean)
          with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
          tf.summary.scalar('stddev', stddev)
          tf.summary.scalar('max', tf.reduce_max(var))
          tf.summary.scalar('min', tf.reduce_min(var))
          tf.summary.histogram('histogram', var)
    
      def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        """Reusable code for making a simple neural net layer.
    
        It does a matrix multiply, bias add, and then uses relu to nonlinearize.
        It also sets up name scoping so that the resultant graph is easy to read,
        and adds a number of summary ops.
        """
        # Adding a name scope ensures logical grouping of the layers in the graph.
        with tf.name_scope(layer_name):
          # This Variable will hold the state of the weights for the layer
          with tf.name_scope('weights'):
            weights = weight_variable([input_dim, output_dim])
            variable_summaries(weights)
          with tf.name_scope('biases'):
            biases = bias_variable([output_dim])
            variable_summaries(biases)
          with tf.name_scope('Wx_plus_b'):
            preactivate = tf.matmul(input_tensor, weights) + biases
            tf.summary.histogram('pre_activations', preactivate)
          activations = act(preactivate, name='activation')
          tf.summary.histogram('activations', activations)
          return activations
    
      hidden1 = nn_layer(x, 784, 500, 'layer1')
    
      with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        tf.summary.scalar('dropout_keep_probability', keep_prob)
        dropped = tf.nn.dropout(hidden1, keep_prob)
    
      # Do not apply softmax activation yet, see below.
      y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
    
      with tf.name_scope('cross_entropy'):
        # The raw formulation of cross-entropy,
        #
        # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
        #                               reduction_indices=[1]))
        #
        # can be numerically unstable.
        #
        # So here we use tf.nn.softmax_cross_entropy_with_logits on the
        # raw outputs of the nn_layer above, and then average across
        # the batch.
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
          cross_entropy = tf.reduce_mean(diff)
      tf.summary.scalar('cross_entropy', cross_entropy)
    
      with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
            cross_entropy)
    
      with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
          correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
          accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      tf.summary.scalar('accuracy', accuracy)
    
      # Merge all the summaries and write them out to /tmp/mnist_logs (by default)
      merged = tf.summary.merge_all()
      train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
      test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
      tf.global_variables_initializer().run()
    
      # Train the model, and also write summaries.
      # Every 10th step, measure test-set accuracy, and write test summaries
      # All other steps, run train_step on training data, & add training summaries
    
      def feed_dict(train):
        """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
        if train or FLAGS.fake_data:
          xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
          k = FLAGS.dropout
        else:
          xs, ys = mnist.test.images, mnist.test.labels
          k = 1.0
        return {x: xs, y_: ys, keep_prob: k}
    
      for i in range(FLAGS.max_steps):
        if i % 10 == 0:  # Record summaries and test-set accuracy
          summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
          test_writer.add_summary(summary, i)
          print('Accuracy at step %s: %s' % (i, acc))
        else:  # Record train set summaries, and train
          if i % 100 == 99:  # Record execution stats
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
            summary, _ = sess.run([merged, train_step],
                                  feed_dict=feed_dict(True),
                                  options=run_options,
                                  run_metadata=run_metadata)
            train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
            train_writer.add_summary(summary, i)
            print('Adding run metadata for', i)
          else:  # Record a summary
            summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
            train_writer.add_summary(summary, i)
      train_writer.close()
      test_writer.close()
    
    
    def main(_):
      if tf.gfile.Exists(FLAGS.log_dir):
        tf.gfile.DeleteRecursively(FLAGS.log_dir)
      tf.gfile.MakeDirs(FLAGS.log_dir)
      train()
    
    
    if __name__ == '__main__':
      parser = argparse.ArgumentParser()
      parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                          default=False,
                          help='If true, uses fake data for unit testing.')
      parser.add_argument('--max_steps', type=int, default=500,
                          help='Number of steps to run trainer.')
      parser.add_argument('--learning_rate', type=float, default=0.001,
                          help='Initial learning rate')
      parser.add_argument('--dropout', type=float, default=0.9,
                          help='Keep probability for training dropout.')
      parser.add_argument('--data_dir', type=str, default='data',
                          help='Directory for storing input data')
      parser.add_argument('--log_dir', type=str, default='logs/mnist_with_summaries',
                          help='Summaries log directory')
      FLAGS, unparsed = parser.parse_known_args()
      tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

    到相应目录,运行

    tensorboard --logdir=mnist_with_summaries

    提示You can navigate to http://127.0.1.1:6006  ,便能进入TensorBoard。

     

  • 相关阅读:
    项目团队技术个人(提拔篇)
    Android开发者掘金(2)—技术篇
    Android开发者掘金(3) 未来
    在Android应用中放置AdMob广告的详细教程
    ant build apk
    手机产品设计中的 15 大禁忌
    Android开发者掘金(1)
    项目团队技术个人(专业篇)
    #pragram预处理指令
    c++ 异常机制
  • 原文地址:https://www.cnblogs.com/qw12/p/6246580.html
Copyright © 2020-2023  润新知