• 在windows系统上安装caffe


    下载编译

    0.确认电脑上有VS2013

    0.确认显卡GPU Compute Capability>=3.0

    1.安装CUDA7.5

    2.下载cuDNN v4,添加到CUDA7.5

    3.根据https://github.com/Microsoft/caffe进行编译(64位Release模式)

    4.需要下载的附加包已传到百度云NugetPackages与caffe文件夹并列存放

    获取和生成caffe使用的Mnist数据集

    由于自带的脚本是针对Linux系统的,需要修改

    get_mnist.sh1.bat

    echo "Downloading..."
    
    set wget="../../../3rdparty/tools/wget.exe"
    
    for %%i in (train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte) do %wget% --no-check-certificate http://yann.lecun.com/exdb/mnist/%%i.gz 
    
    echo "done"

     get_mnist.sh2.bat

    echo "Renaming..."
    
    set do_7za="../../../3rdparty/tools/7za.exe"
    
    for %%i in (train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte) do %do_7za% x %%i.gz
    
    rename train-images.idx3-ubyte train-images-idx3-ubyte
    rename train-labels.idx1-ubyte train-labels-idx1-ubyte
    rename t10k-images.idx3-ubyte t10k-images-idx3-ubyte
    rename t10k-labels.idx1-ubyte t10k-labels-idx1-ubyte
    
    echo "done"

     create_mnist-lmdb.sh.bat

    set DATA=../../data/mnist
    set EXAMPLE=../../examples/mnist
    set TOOLS=../../Build/x64/Release
    
    set BACKEND=lmdb
    REM set BACKEND=leveldb
    
    echo "Creating %BACKEND%..."
    
    rd /s /q "mnist_train_%BACKEND%"
    rd /s /q "mnist_test_%BACKEND%"
    
    "%TOOLS%/convert_mnist_data.exe" %DATA%/train-images-idx3-ubyte %DATA%/train-labels-idx1-ubyte mnist_train_%BACKEND% --backend=%BACKEND%
    "%TOOLS%/convert_mnist_data.exe" %DATA%/t10k-images-idx3-ubyte %DATA%/t10k-labels-idx1-ubyte mnist_test_%BACKEND% --backend=%BACKEND%
    
    echo "Done."
    
    pause

     train_lenet.sh.bat

    cd ../../
    "Build/x64/Release/caffe.exe" train --solver=examples/mnist/lenet_solver.prototxt
    pause

    测试结果

    python支持 

    1.安装anaconda

    2.cmd运行pip install protobuf

    3.修改CommonSettings.props然后生成pycaffe项目

    <PythonSupport>true</PythonSupport>

    <PythonDir>相应路径</PythonDir>

    4.添加环境变量,“PythonPath” 指向相应路径Buildx64Releasepycaffe

    5.import caffe无报错即通过

    matlab支持 

    1.安装matlab

    2.修改CommonSettings.props然后生成matcaffe项目

    <MatlabSupport>true</MatlabSupport>

    <MatlabDir>相应路径</MatlabDir> 

    3.将相应路径Buildx64Release添加到path环境变量

    4.把相应路径Buildx64Releasematcaffe添加到matlab的search path中

    5.运行classification_demo.m

    >> classification_demo
    using caffe/examples/images/cat.jpg as input image
    Elapsed time is 0.078070 seconds.
    Elapsed time is 0.381840 seconds.
    Cleared 0 solvers and 1 stand-alone nets
  • 相关阅读:
    BIND_MISMATCH导致过多VERSION COUNT的问题
    Using dbms_shared_pool.purge to remove a single task from the library cache
    SQL Server 2012 新的分页函数 OFFSET & FETCH NEXT
    How to delete expired archive log files using rman?
    Oracle利用external table 查看trace文件
    全栈开发经验
    ASP.NET Core教程:使用Supervisor做ASP.NET Core应用程序守护进程
    ASP.NET Core教程:ASP.NET Core程序部署到Linux
    ASP.NET Core教程:ASP.NET Core 程序部署到Windows系统
    C#:窗体传值
  • 原文地址:https://www.cnblogs.com/qw12/p/6146980.html
Copyright © 2020-2023  润新知