• 高斯混合模型参数估计的EM算法


     

    介绍摘自李航《统计学习方法》

    EM算法

    EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法。本章首先叙述EM算法,然后讨论EM算法的收敛性;作为EM算法的应用,介绍高斯混合模型的学习;最后叙述EM算法的推广——GEM算法。

    将观测数据表示为Y=(Y1,Y2,…,Yn)T,未观测数据表示为Z=(Z1,Z2,…,Zn)T,则观测数据的似然函数为

    alt

    alt

    考虑求模型参数alt=(altΠ,p,q)的极大似然估计,即

    alt

    这个问题没有解析解,只有通过迭代的方法求解。EM算法就是可以用于求解这个问题的一种迭代算法。下面给出针对以上问题的EM算法,其推导过程省略。

    EM算法首先选取参数的初值,记作alt(0)=(altΠ(0),p(0),q(0)),然后通过下面的步骤迭代计算参数的估计值,直至收敛为止。第i次迭代参数的估计值为alt(i)=(alt(i),p(i),q(i))。EM算法的第i+1次迭代如下。

    E步:计算在模型参数Πalt(i),p(i),q(i)下观测数据yj来自掷硬币B的概率

    altM步:计算模型参数的新估计值

     

    EM算法在高斯混合模型学习中的应用

    EM算法的一个重要应用是高斯混合模型的参数估计。高斯混合模型应用广泛,在许多情况下,EM算法是学习高斯混合模型(Gaussian misture model)的有效方法。

    定义9.2(高斯混合模型) 高斯混合模型是指具有如下形式的概率分布模型:

    高斯混合模型参数估计的EM算法

    alt

    1.明确隐变量,写出完全数据的对数似然函数 

    可以设想观测数据yj,j=1,2,…,N,是这样产生的:首先依概率ak选择第k个高斯分布分模型Ø(y|altθk);然后依第k个分模型的概率分布Ø(y|altθk)生成观测数据yj。这时观测数据yj,j=1,2,…,N,是已知的;反映观测数据yj来自第k个分模型的数据是未知的,k=1,2,…,K,以隐变量altγjk表示,其定义如下:

    alt

    有了观测数据yj及未观测数据γaltjk,那么完全数据是

    alt

    于是,可以写出完全数据的似然函数:

    alt

    alt

    2.EM算法的E步:确定Q函数

     

    3.确定EM算法的M步

    迭代的M步是求函数Q(altθ,θalt(i))对alt的极大值,即求新一轮迭代的模型参数:

    alt

    重复以上计算,直到对数似然函数值不再有明显的变化为止。

     1 # coding:utf-8
     2 import numpy as np
     3 
     4 def qq(y,alpha,mu,sigma,K,gama):#计算Q函数
     5     gsum=[]
     6     n=len(y)
     7     for k in range(K):
     8             gsum.append(np.sum([gama[j,k] for j in range(n)]))
     9     return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+
    10            np.sum([[np.sum(gama[j,k]*(np.log(1/np.sqrt(2*np.pi))-np.log(np.sqrt(sigma[k]))-1/2/sigma[k]*(y[j]-mu[k])**2))
    11                     for j in range(n)] for k in range(K)])  #《统计学习方法》中公式9.29有误
    12 
    13 def phi(mu,sigma,y): #计算phi
    14     return 1/(np.sqrt(2*np.pi*sigma)*np.exp(-(y-mu)**2/2/sigma))
    15 
    16 def gama(alpha,mu,sigma,i,k): #计算gama
    17     sumak=np.sum([[a*phi(m,s,i)] for a,m,s in zip(alpha,mu,sigma)])
    18     return alpha[k]*phi(mu[k],sigma[k],i)/sumak
    19 
    20 def dataN(length,k):#生成数据
    21     y=[np.random.normal(5*j,j+5,length/k) for j in range(k)]
    22     return y
    23 
    24 def EM(y,K,iter=1000): #EM算法
    25     n = len(y)
    26     sigma=[10]*K
    27     mu=range(K)
    28     alpha=np.ones(K)
    29     qqold,qqnew=0,0
    30     for it in range(iter):
    31         gama2=np.ones((n,K))
    32         for k in range(K):
    33             for i in range(n):
    34                 gama2[i,k]=gama(alpha,mu,sigma,y[i],k)
    35         for k in range(K):
    36             sum_gama=np.sum([gama2[j,k] for j in range(n)])
    37             mu[k]=np.sum([gama2[j,k]*y[j] for j in range(n)])/sum_gama
    38             sigma[k]=np.sum([gama2[j,k]*(y[j]-mu[k])**2 for j in range(n)])/sum_gama
    39             alpha[k]=sum_gama/n
    40         qqnew=qq(y,alpha,mu,sigma,K,gama2)
    41         if abs(qqold-qqnew)<0.000001:
    42             break
    43         qqold=qqnew
    44     return alpha,mu,sigma
    45 
    46 N = 500
    47 k=2
    48 data=dataN(N,k)
    49 y=np.reshape(data,(1,N))
    50 a,b,c = EM(y[0], k)
    51 print a,b,c
    52 # iter=180
    53 #[ 0.57217609  0.42782391] [4.1472879054766887, 0.72534713118155769] [44.114682884921415, 24.676116557533351]
    54 
    55 sigma = 6  #网上的数据
    56 miu1 = 40
    57 miu2 = 20
    58 X = np.zeros((1, N))
    59 for i in xrange(N):
    60     if np.random.random() > 0.5:
    61         X[0, i] = np.random.randn() * sigma + miu1
    62     else:
    63         X[0, i] = np.random.randn() * sigma + miu2
    64 a,b,c = EM(X[0], k)
    65 print a,b,c
    66 # iter=114
    67 #[ 0.44935959  0.55064041] [40.561782615819361, 21.444533254494189] [33.374144230703514, 51.459622219329155]
  • 相关阅读:
    WPF:改变ListBoxItem和ListViewItem的颜色
    WPF样式——经典博客
    WPF中的Style(风格,样式)
    WPF中的动画
    WPF StoryBoard用法
    WPF 单个触发器、多个触发器、多条件触发器
    WPF编程学习 —— 样式
    WFP学习好微博
    Style、ControlTemplate 和 DataTemplate 触发器
    Arcgis 中国区技术支持 官网
  • 原文地址:https://www.cnblogs.com/qw12/p/5697206.html
Copyright © 2020-2023  润新知