仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。
multiprocess.process模块
process模块介绍
process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动) 强调: 1. 需要使用关键字的方式来指定参数 2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号 参数介绍: 1 group参数未使用,值始终为None 2 target表示调用对象,即子进程要执行的任务 3 args表示调用对象的位置参数元组,args=(1,2,'egon',) 4 kwargs表示调用对象的字典,kwargs={'name':'egon','age':18} 5 name为子进程的名称
1 p.start():启动进程,并调用该子进程中的p.run() 2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁 4 p.is_alive():如果p仍然运行,返回True 5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
1 p.start():启动进程,并调用该子进程中的p.run() 2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁 4 p.is_alive():如果p仍然运行,返回True 5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置 2 p.name:进程的名称 3 p.pid:进程的pid 4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可) 5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置 2 p.name:进程的名称 3 p.pid:进程的pid 4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可) 5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了。
在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了。
使用process模块创建进程
在一个python进程中开启子进程,start方法和并发效果。
import time from multiprocessing import Process def f(name): print('hello', name) print('我是子进程') if __name__ == '__main__': p = Process(target=f, args=('bob',)) p.start() time.sleep(1) print('执行主进程的内容了')
import time from multiprocessing import Process def f(name): print('hello', name) print('我是子进程') if __name__ == '__main__': p = Process(target=f, args=('bob',)) p.start() time.sleep(1) print('执行主进程的内容了')
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) print('我是子进程') if __name__ == '__main__': p = Process(target=f, args=('bob',)) p.start() #p.join() print('我是父进程')
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) print('我是子进程') if __name__ == '__main__': p = Process(target=f, args=('bob',)) p.start() #p.join() print('我是父进程')
import os from multiprocessing import Process def f(x): print('子进程id :',os.getpid(),'父进程id :',os.getppid()) return x*x if __name__ == '__main__': print('主进程id :', os.getpid()) p_lst = [] for i in range(5): p = Process(target=f, args=(i,)) p.start()
import os from multiprocessing import Process def f(x): print('子进程id :',os.getpid(),'父进程id :',os.getppid()) return x*x if __name__ == '__main__': print('主进程id :', os.getpid()) p_lst = [] for i in range(5): p = Process(target=f, args=(i,)) p.start()
进阶,多个进程同时运行(注意,子进程的执行顺序不是根据启动顺序决定的)
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) if __name__ == '__main__': p_lst = [] for i in range(5): p = Process(target=f, args=('bob',)) p.start() p_lst.append(p)
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) if __name__ == '__main__': p_lst = [] for i in range(5): p = Process(target=f, args=('bob',)) p.start() p_lst.append(p) p.join() # [p.join() for p in p_lst] print('父进程在执行')
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) if __name__ == '__main__': p_lst = [] for i in range(5): p = Process(target=f, args=('bob',)) p.start() p_lst.append(p) # [p.join() for p in p_lst] print('父进程在执行')
除了上面这些开启进程的方法,还有一种以继承Process类的形式开启进程的方式
import os from multiprocessing import Process class MyProcess(Process): def __init__(self,name): super().__init__() self.name=name def run(self): print(os.getpid()) print('%s 正在和女主播聊天' %self.name) p1=MyProcess('wupeiqi') p2=MyProcess('yuanhao') p3=MyProcess('nezha') p1.start() #start会自动调用run p2.start() # p2.run() p3.start() p1.join() p2.join() p3.join() print('主线程')
进程之间的数据隔离问题
from multiprocessing import Process def work(): global n n=0 print('子进程内: ',n) if __name__ == '__main__': n = 100 p=Process(target=work) p.start() print('主进程内: ',n)
守护进程
会随着主进程的结束而结束。
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
import os import time from multiprocessing import Process class Myprocess(Process): def __init__(self,person): super().__init__() self.person = person def run(self): print(os.getpid(),self.name) print('%s正在和女主播聊天' %self.person) p=Myprocess('哪吒') p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p.start() time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id print('主')
from multiprocessing import Process def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() time.sleep(0.1) print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.
socket聊天并发实例
from socket import * from multiprocessing import Process server=socket(AF_INET,SOCK_STREAM) server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) server.bind(('127.0.0.1',8080)) server.listen(5) def talk(conn,client_addr): while True: try: msg=conn.recv(1024) if not msg:break conn.send(msg.upper()) except Exception: break if __name__ == '__main__': #windows下start进程一定要写到这下面 while True: conn,client_addr=server.accept() p=Process(target=talk,args=(conn,client_addr)) p.start()
from socket import * from multiprocessing import Process server=socket(AF_INET,SOCK_STREAM) server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) server.bind(('127.0.0.1',8080)) server.listen(5) def talk(conn,client_addr): while True: try: msg=conn.recv(1024) if not msg:break conn.send(msg.upper()) except Exception: break if __name__ == '__main__': #windows下start进程一定要写到这下面 while True: conn,client_addr=server.accept() p=Process(target=talk,args=(conn,client_addr)) p.start()
from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue client.send(msg.encode('utf-8')) msg=client.recv(1024) print(msg.decode('utf-8'))
from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue client.send(msg.encode('utf-8')) msg=client.recv(1024) print(msg.decode('utf-8'))
多进程中的其他方法
from multiprocessing import Process import time import random class Myprocess(Process): def __init__(self,person): self.name=person super().__init__() def run(self): print('%s正在和网红脸聊天' %self.name) time.sleep(random.randrange(1,5)) print('%s还在和网红脸聊天' %self.name) p1=Myprocess('哪吒') p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 print(p1.is_alive()) #结果为True print('开始') print(p1.is_alive()) #结果为False
from multiprocessing import Process import time import random class Myprocess(Process): def __init__(self,person): self.name=person super().__init__() def run(self): print('%s正在和网红脸聊天' %self.name) time.sleep(random.randrange(1,5)) print('%s还在和网红脸聊天' %self.name) p1=Myprocess('哪吒') p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 print(p1.is_alive()) #结果为True print('开始') print(p1.is_alive()) #结果为False
1 class Myprocess(Process): 2 def __init__(self,person): 3 self.name=person # name属性是Process中的属性,标示进程的名字 4 super().__init__() # 执行父类的初始化方法会覆盖name属性 5 #self.name = person # 在这里设置就可以修改进程名字了 6 #self.person = person #如果不想覆盖进程名,就修改属性名称就可以了 7 def run(self): 8 print('%s正在和网红脸聊天' %self.name) 9 # print('%s正在和网红脸聊天' %self.person) 10 time.sleep(random.randrange(1,5)) 11 print('%s正在和网红脸聊天' %self.name) 12 # print('%s正在和网红脸聊天' %self.person) 13 14 15 p1=Myprocess('哪吒') 16 p1.start() 17 print(p1.pid) #可以查看子进程的进程id
1 class Myprocess(Process): 2 def __init__(self,person): 3 self.name=person # name属性是Process中的属性,标示进程的名字 4 super().__init__() # 执行父类的初始化方法会覆盖name属性 5 #self.name = person # 在这里设置就可以修改进程名字了 6 #self.person = person #如果不想覆盖进程名,就修改属性名称就可以了 7 def run(self): 8 print('%s正在和网红脸聊天' %self.name) 9 # print('%s正在和网红脸聊天' %self.person) 10 time.sleep(random.randrange(1,5)) 11 print('%s正在和网红脸聊天' %self.name) 12 # print('%s正在和网红脸聊天' %self.person) 13 14 15 p1=Myprocess('哪吒') 16 p1.start() 17 print(p1.pid) #可以查看子进程的进程id
进程同步(multiprocess.Lock、multiprocess.Semaphore、multiprocess.Event)
锁 —— multiprocess.Lock
通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。
当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。
import os import time import random from multiprocessing import Process def work(n): print('%s: %s is running' %(n,os.getpid())) time.sleep(random.random()) print('%s:%s is done' %(n,os.getpid())) if __name__ == '__main__': for i in range(3): p=Process(target=work,args=(i,)) p.start()
# 由并发变成了串行,牺牲了运行效率,但避免了竞争 import os import time import random from multiprocessing import Process,Lock def work(lock,n): lock.acquire() print('%s: %s is running' % (n, os.getpid())) time.sleep(random.random()) print('%s: %s is done' % (n, os.getpid())) lock.release() if __name__ == '__main__': lock=Lock() for i in range(3): p=Process(target=work,args=(lock,i)) p.start()
上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。
接下来,我们以模拟抢票为例,来看看数据安全的重要性。
#文件db的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 #并发运行,效率高,但竞争写同一文件,数据写入错乱 from multiprocessing import Process,Lock import time,json,random def search(): dic=json.load(open('db')) print(' 33[43m剩余票数%s 33[0m' %dic['count']) def get(): dic=json.load(open('db')) time.sleep(0.1) #模拟读数据的网络延迟 if dic['count'] >0: dic['count']-=1 time.sleep(0.2) #模拟写数据的网络延迟 json.dump(dic,open('db','w')) print(' 33[43m购票成功 33[0m') def task(): search() get() if __name__ == '__main__': for i in range(100): #模拟并发100个客户端抢票 p=Process(target=task) p.start()
#文件db的内容为:{"count":5} #注意一定要用双引号,不然json无法识别 #并发运行,效率高,但竞争写同一文件,数据写入错乱 from multiprocessing import Process,Lock import time,json,random def search(): dic=json.load(open('db')) print(' 33[43m剩余票数%s 33[0m' %dic['count']) def get(): dic=json.load(open('db')) time.sleep(random.random()) #模拟读数据的网络延迟 if dic['count'] >0: dic['count']-=1 time.sleep(random.random()) #模拟写数据的网络延迟 json.dump(dic,open('db','w')) print(' 33[32m购票成功 33[0m') else: print(' 33[31m购票失败 33[0m') def task(lock): search() lock.acquire() get() lock.release() if __name__ == '__main__': lock = Lock() for i in range(100): #模拟并发100个客户端抢票 p=Process(target=task,args=(lock,)) p.start()
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。 虽然可以用文件共享数据实现进程间通信,但问题是: 1.效率低(共享数据基于文件,而文件是硬盘上的数据) 2.需要自己加锁处理 #因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。 队列和管道都是将数据存放于内存中 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来, 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
信号量 —— multiprocess.Semaphore(了解)
互斥锁同时只允许一个线程更改数据,而信号量Semaphore是同时允许一定数量的线程更改数据 。 假设商场里有4个迷你唱吧,所以同时可以进去4个人,如果来了第五个人就要在外面等待,等到有人出来才能再进去玩。 实现: 信号量同步基于内部计数器,每调用一次acquire(),计数器减1;每调用一次release(),计数器加1.当计数器为0时,acquire()调用被阻塞。这是迪科斯彻(Dijkstra)信号量概念P()和V()的Python实现。信号量同步机制适用于访问像服务器这样的有限资源。 信号量与进程池的概念很像,但是要区分开,信号量涉及到加锁的概念
from multiprocessing import Process,Semaphore import time,random def go_ktv(sem,user): sem.acquire() print('%s 占到一间ktv小屋' %user) time.sleep(random.randint(0,3)) #模拟每个人在ktv中待的时间不同 sem.release() if __name__ == '__main__': sem=Semaphore(4) p_l=[] for i in range(13): p=Process(target=go_ktv,args=(sem,'user%s' %i,)) p.start() p_l.append(p) for i in p_l: i.join() print('============》')
事件 —— multiprocess.Event(了解)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。 事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。 clear:将“Flag”设置为False set:将“Flag”设置为True
from multiprocessing import Process, Event import time, random def car(e, n): while True: if not e.is_set(): # 进程刚开启,is_set()的值是Flase,模拟信号灯为红色 print(' 33[31m红灯亮 33[0m,car%s等着' % n) e.wait() # 阻塞,等待is_set()的值变成True,模拟信号灯为绿色 print(' 33[32m车%s 看见绿灯亮了 33[0m' % n) time.sleep(random.randint(3, 6)) if not e.is_set(): #如果is_set()的值是Flase,也就是红灯,仍然回到while语句开始 continue print('车开远了,car', n) break def police_car(e, n): while True: if not e.is_set():# 进程刚开启,is_set()的值是Flase,模拟信号灯为红色 print(' 33[31m红灯亮 33[0m,car%s等着' % n) e.wait(0.1) # 阻塞,等待设置等待时间,等待0.1s之后没有等到绿灯就闯红灯走了 if not e.is_set(): print(' 33[33m红灯,警车先走 33[0m,car %s' % n) else: print(' 33[33;46m绿灯,警车走 33[0m,car %s' % n) break def traffic_lights(e, inverval): while True: time.sleep(inverval) if e.is_set(): print('######', e.is_set()) e.clear() # ---->将is_set()的值设置为False else: e.set() # ---->将is_set()的值设置为True print('***********',e.is_set()) if __name__ == '__main__': e = Event() for i in range(10): p=Process(target=car,args=(e,i,)) # 创建是个进程控制10辆车 p.start() for i in range(5): p = Process(target=police_car, args=(e, i,)) # 创建5个进程控制5辆警车 p.start() t = Process(target=traffic_lights, args=(e, 10)) # 创建一个进程控制红绿灯 t.start() print('============》')
进程间通信——队列和管道(multiprocess.Queue、multiprocess.Pipe)
进程间通信
IPC(Inter-Process Communication)
队列
概念介绍
创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
Queue([maxsize]) 创建共享的进程队列。 参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。 底层队列使用管道和锁定实现。
Queue([maxsize]) 创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。 Queue的实例q具有以下方法: q.get( [ block [ ,timeout ] ] ) 返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。 q.get_nowait( ) 同q.get(False)方法。 q.put(item [, block [,timeout ] ] ) 将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。 q.qsize() 返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。 q.empty() 如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。 q.full() 如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。
q.close() 关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。 q.cancel_join_thread() 不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。 q.join_thread() 连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
代码实例
''' multiprocessing模块支持进程间通信的两种主要形式:管道和队列 都是基于消息传递实现的,但是队列接口 ''' from multiprocessing import Queue q=Queue(3) #put ,get ,put_nowait,get_nowait,full,empty q.put(3) q.put(3) q.put(3) # q.put(3) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。 # 如果队列中的数据一直不被取走,程序就会永远停在这里。 try: q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。 except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。 print('队列已经满了') # 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。 print(q.full()) #满了 print(q.get()) print(q.get()) print(q.get()) # print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。 try: q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。 except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。 print('队列已经空了') print(q.empty()) #空了
上面这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。
import time from multiprocessing import Process, Queue def f(q): q.put([time.asctime(), 'from Eva', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。 if __name__ == '__main__': q = Queue() #创建一个Queue对象 p = Process(target=f, args=(q,)) #创建一个进程 p.start() print(q.get()) p.join()
上面是一个queue的简单应用,使用队列q对象调用get函数来取得队列中最先进入的数据。 接下来看一个稍微复杂一些的例子:
import os import time import multiprocessing # 向queue中输入数据的函数 def inputQ(queue): info = str(os.getpid()) + '(put):' + str(time.asctime()) queue.put(info) # 向queue中输出数据的函数 def outputQ(queue): info = queue.get() print ('%s%s 33[32m%s 33[0m'%(str(os.getpid()), '(get):',info)) # Main if __name__ == '__main__': multiprocessing.freeze_support() record1 = [] # store input processes record2 = [] # store output processes queue = multiprocessing.Queue(3) # 输入进程 for i in range(10): process = multiprocessing.Process(target=inputQ,args=(queue,)) process.start() record1.append(process) # 输出进程 for i in range(10): process = multiprocessing.Process(target=outputQ,args=(queue,)) process.start() record2.append(process) for p in record1: p.join() for p in record2: p.join()
生产者消费者模型
在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。
为什么要使用生产者和消费者模式
在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。
什么是生产者消费者模式
生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。
基于队列实现生产者消费者模型
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() time.sleep(random.randint(1,3)) print(' 33[45m%s 吃 %s 33[0m' %(os.getpid(),res)) def producer(q): for i in range(10): time.sleep(random.randint(1,3)) res='包子%s' %i q.put(res) print(' 33[44m%s 生产了 %s 33[0m' %(os.getpid(),res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) #开始 p1.start() c1.start() print('主')
此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。
解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环。
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() if res is None:break #收到结束信号则结束 time.sleep(random.randint(1,3)) print(' 33[45m%s 吃 %s 33[0m' %(os.getpid(),res)) def producer(q): for i in range(10): time.sleep(random.randint(1,3)) res='包子%s' %i q.put(res) print(' 33[44m%s 生产了 %s 33[0m' %(os.getpid(),res)) q.put(None) #发送结束信号 if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) #开始 p1.start() c1.start() print('主')
注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() if res is None:break #收到结束信号则结束 time.sleep(random.randint(1,3)) print(' 33[45m%s 吃 %s 33[0m' %(os.getpid(),res)) def producer(q): for i in range(2): time.sleep(random.randint(1,3)) res='包子%s' %i q.put(res) print(' 33[44m%s 生产了 %s 33[0m' %(os.getpid(),res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) #开始 p1.start() c1.start() p1.join() q.put(None) #发送结束信号 print('主')
但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() if res is None:break #收到结束信号则结束 time.sleep(random.randint(1,3)) print(' 33[45m%s 吃 %s 33[0m' %(os.getpid(),res)) def producer(name,q): for i in range(2): time.sleep(random.randint(1,3)) res='%s%s' %(name,i) q.put(res) print(' 33[44m%s 生产了 %s 33[0m' %(os.getpid(),res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=('包子',q)) p2=Process(target=producer,args=('骨头',q)) p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) c2=Process(target=consumer,args=(q,)) #开始 p1.start() p2.start() p3.start() c1.start() p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号 p2.join() p3.join() q.put(None) #有几个消费者就应该发送几次结束信号None q.put(None) #发送结束信号 print('主')
JoinableQueue([maxsize])
创建可连接的共享进程队列。这就像是一个Queue对象,但队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。
JoinableQueue的实例p除了与Queue对象相同的方法之外,还具有以下方法: q.task_done() 使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。如果调用此方法的次数大于从队列中删除的项目数量,将引发ValueError异常。 q.join() 生产者将使用此方法进行阻塞,直到队列中所有项目均被处理。阻塞将持续到为队列中的每个项目均调用q.task_done()方法为止。 下面的例子说明如何建立永远运行的进程,使用和处理队列上的项目。生产者将项目放入队列,并等待它们被处理。
from multiprocessing import Process,JoinableQueue import time,random,os def consumer(q): while True: res=q.get() time.sleep(random.randint(1,3)) print(' 33[45m%s 吃 %s 33[0m' %(os.getpid(),res)) q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了 def producer(name,q): for i in range(10): time.sleep(random.randint(1,3)) res='%s%s' %(name,i) q.put(res) print(' 33[44m%s 生产了 %s 33[0m' %(os.getpid(),res)) q.join() #生产完毕,使用此方法进行阻塞,直到队列中所有项目均被处理。 if __name__ == '__main__': q=JoinableQueue() #生产者们:即厨师们 p1=Process(target=producer,args=('包子',q)) p2=Process(target=producer,args=('骨头',q)) p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) c2=Process(target=consumer,args=(q,)) c1.daemon=True c2.daemon=True #开始 p_l=[p1,p2,p3,c1,c2] for p in p_l: p.start() p1.join() p2.join() p3.join() print('主') #主进程等--->p1,p2,p3等---->c1,c2 #p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据 #因而c1,c2也没有存在的价值了,不需要继续阻塞在进程中影响主进程了。应该随着主进程的结束而结束,所以设置成守护进程就可以了。
管道(了解)
#创建管道的类: Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道 #参数介绍: dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。 #主要方法: conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。 conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象 #其他方法: conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法 conn1.fileno():返回连接使用的整数文件描述符 conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。 conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。 conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收 conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。
from multiprocessing import Process, Pipe def f(conn): conn.send("Hello The_Third_Wave") conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) p.join()
应该特别注意管道端点的正确管理问题。如果是生产者或消费者中都没有使用管道的某个端点,就应将它关闭。这也说明了为何在生产者中关闭了管道的输出端,在消费者中关闭管道的输入端。如果忘记执行这些步骤,程序可能在消费者中的recv()操作上挂起。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道后才能生成EOFError异常。因此,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。
from multiprocessing import Process, Pipe def f(parent_conn,child_conn): #parent_conn.close() #不写close将不会引发EOFError while True: try: print(child_conn.recv()) except EOFError: child_conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(parent_conn,child_conn,)) p.start() child_conn.close() parent_conn.send('hello') parent_conn.close() p.join()
from multiprocessing import Process,Pipe def consumer(p,name): produce, consume=p produce.close() while True: try: baozi=consume.recv() print('%s 收到包子:%s' %(name,baozi)) except EOFError: break def producer(seq,p): produce, consume=p consume.close() for i in seq: produce.send(i) if __name__ == '__main__': produce,consume=Pipe() c1=Process(target=consumer,args=((produce,consume),'c1')) c1.start() seq=(i for i in range(10)) producer(seq,(produce,consume)) produce.close() consume.close() c1.join() print('主进程')
from multiprocessing import Process,Pipe,Lock def consumer(p,name,lock): produce, consume=p produce.close() while True: lock.acquire() baozi=consume.recv() lock.release() if baozi: print('%s 收到包子:%s' %(name,baozi)) else: consume.close() break def producer(p,n): produce, consume=p consume.close() for i in range(n): produce.send(i) produce.send(None) produce.send(None) produce.close() if __name__ == '__main__': produce,consume=Pipe() lock = Lock() c1=Process(target=consumer,args=((produce,consume),'c1',lock)) c2=Process(target=consumer,args=((produce,consume),'c2',lock)) p1=Process(target=producer,args=((produce,consume),10)) c1.start() c2.start() p1.start() produce.close() consume.close() c1.join() c2.join() p1.join() print('主进程')