• (高斯消元)HDU2827 The Evaluation of Determinant


    The determinant is quite important in Linear Algebras, but I think that almost everyone who has ever learnt Linear Algebras is tired of the complicated and tedious calculations of determinant. Actually, it’s not the job we should do, isn’t it? As an outstanding Geek, why don’t we just ask computers to do these? 


    Give you a determinant D (it’s ensured that the result of it is an integer) and m, try to get the result of this determinant mod m, and m = p1 * p2 …… pn, all the pi are different. You can assume 1000 < pi < 10000, aij < 1000, and m can be fit in 32-bit signed integer. 

    InputInput two integers n and m in the first line, n represents the scale of the determinant. (n <= 100) 
     Then comes an n * n matrix, the determinant’s component aij means the one in row i and column j. 
    OutputOutput the result of the determinant D mod m.Sample Input

    2 1009
    1 2
    3 4

    Sample Output

    1007

    用高斯消元法化为对角线形式即可。

    纯暴力进行过多swap的高斯消元会TLE

    #include <iostream>
    #include <string>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <set>
    #include <map>
    #include <list>
    #include <vector>
    #include <stack>
    #define mp make_pair
    //#define P make_pair
    #define MIN(a,b) (a>b?b:a)
    //#define MAX(a,b) (a>b?a:b)
    typedef long long ll;
    typedef unsigned long long ull;
    const int MAX=1e3+5;
    const int MAX_V=1e3+5;
    const int INF=1e9+5;
    const ll INF2=4e18+5;
    const double M=4e18;
    using namespace std;
    const int MOD=1e9+7;
    typedef pair<ll,int> pii;
    const double eps=0.000000001;
    #define rank rankk
    ll n,m;
    ll a[MAX][MAX];
    ll Gause()
    {
        ll re=1;
        int st=0;
        for(ll i=1;i<=n;i++)
        {
            for(ll j=i+1;j<=n;j++)
            {
                ll x=i,y=j;
                while(a[y][i])
                {
                    ll ex=a[x][i]/a[y][i];
                    for(ll s=i;s<=n;s++)
                    {
                        a[x][s]=((a[x][s]-ex*a[y][s]%m)%m+m)%m;
                    }
                    swap(x,y);
                }
                if(x!=i)
                {
                    for(ll s=i;s<=n;s++)
                        swap(a[i][s],a[x][s]);
                    st^=1;
                }
            }
            if(!a[i][i])
                return 0;
        }
        for(ll i=1;i<=n;i++)
            re=(re*a[i][i]%m+m)%m;
        if(st)
            re*=-1;
        if(re<0)
            re+=m;
        return re;
    }
    int main()
    {
        while(~scanf("%I64d%I64d",&n,&m))
        {
            for(ll i=1;i<=n;i++)
                for(ll j=1;j<=n;j++)
                {
                    scanf("%I64d",&a[i][j]);
                    a[i][j]=(a[i][j]%m+m)%m;
                }
            printf("%I64d
    ",Gause());
        }
        return 0;
    }
  • 相关阅读:
    redis 使用
    VS----id为xxxx的进程当前未运行 问题
    bootstrap--------bootstrap table显示行号
    js--------js获取当前时间,返回日期yyyy-MM-dd
    CLR via C#--------CLR的执行模式
    Python链表成对调换
    Python去除列表中的重复元素
    MySQL索引背后的数据结构及算法原理
    Python 垃圾回收机制
    Python 里的拷贝
  • 原文地址:https://www.cnblogs.com/quintessence/p/6940843.html
Copyright © 2020-2023  润新知