• [Project Euler] Problem 49


    Problem Description

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.

    There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.

    What 12-digit number do you form by concatenating the three terms in this sequence?

    C#

    使用C#处理这类问题,是相当爽的。Because CSharp has LINQ!

    解决这道题的思路是这样:

    1. 找出1001到9999中所有的素数;
    2. 基于第一步找出的素数数组,进行分组,分组的依据是,如果两个数所用的字符集相同,不如1013和1031属于一组,因为它们的字符集都是{0, 1, 1, 3};
    3. 筛选出每一组里面长度大于等于3的组;
    4. 针对步骤3的结果的每一组,看是否满足题目要求,这一步就比较简单了;

    代码如下:

            public static void Run()
            {
                // generate primes from 1001 to 9999
                var primeList = GeneratePrimeList();
    
                // use linq to get the valid list in which each element has 3 or more numbers which are permutations of each other
                var groupedList = from item in primeList
                             group item by Convert.ToInt32(string.Concat(item.ToString().ToCharArray().OrderBy<char, char>(c => c))) into itemGroup
                             where itemGroup.Count() >= 3
                             select itemGroup;
    
                // check each group and output the result
                groupedList.ToList().ForEach((ig) => CheckAndOutputIsValid(ig));
            }

    It looks so simple and so fantastic, isn’t it? LINQ is amazing!

    CheckAndOutputIsValid

            private static void CheckAndOutputIsValid(IGrouping<int, int> ig)
            {
                List<int> offsetList = new List<int>();
    
                int count = ig.Count();
                for (int i = 1; i < count - 1; i++)
                {
                    offsetList.Clear();
    
                    for (int j = 0; j <count; j++)
                    {
                        if (j == i) continue;
                        int offset = j > i ? ig.ElementAt(j) - ig.ElementAt(i) : ig.ElementAt(i) - ig.ElementAt(j);
    
                        offsetList.Add(offset);
                    }
    
                    // check if there have equal offsets
                    var result = from item in offsetList
                                 group item by item into itemGroup
                                 where itemGroup.Count() >= 2
                                 select itemGroup;
    
                    // output the valid result
                    if (result.Count() > 0)
                    {
                        int middle = ig.ElementAt(i);
                        int offset = result.First().Key;
                        Console.WriteLine("{0}, {1}, {2}, offset={3}", middle - offset, middle, middle + offset, offset);
                    }
                }
            }
  • 相关阅读:
    IOS 动画的各种实现方法
    多视图控制器--自动布局 3.5 4.0英寸的应用程序
    IOS 多线程编程之Grand Central Dispatch(GCD)介绍和使用 多线程基础和练习
    TableView--通讯录--开篇
    UI 网络程序
    XML JSON解析--基本功能
    通讯录CoreData数据库实现版
    CoreData的使用入门到精通
    sqlite 数据类型详解
    189. Rotate Array
  • 原文地址:https://www.cnblogs.com/quark/p/2555032.html
Copyright © 2020-2023  润新知