题目链接:https://www.luogu.com.cn/problem/P4377
解题思路:
映射关系:
- (w_i ightarrow b_i);
- (t_i ightarrow a_i)。
问题转变成了01分数规划问题。但是有一个限制,就是 (sum w_i imes b_i ge W)。
可以考虑01背包。把 (b_i) 作为第 (i) 个物品的重量,(a_i - mid imes b_i) 作为第 (i) 个物品的价值,然后问题就转化为背包了。
那么 (dp[n][W]) 就是最大值。
一个要注意的地方: (sum w_i imes b_i) 可能超过 (W) ,此时直接视为 (W) 即可。
示例代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 255, maxw = 1010;
int n, W, a[maxn], b[maxn];
double f[maxw];
bool check(double mid) {
f[0] = 0;
for (int i = 1; i <= W; i ++) f[i] = -1e9;
for (int i = 1; i <= n; i ++) {
for (int j = W; j >= 0; j --) {
int k = min(j+b[i], W);
f[k] = max(f[k], f[j] + a[i] - mid * b[i]);
}
}
return f[W] >= 0;
}
int main() {
cin >> n >> W;
for (int i = 1; i <= n; i ++) cin >> b[i] >> a[i];
double L = 0, R = 1000;
while (R - L > 1e-5) {
double mid = (L + R) / 2;
if (check(mid)) L = mid;
else R = mid;
}
cout << (int) (1000 * L) << endl;
return 0;
}