• [NOIP2015] 子串


    Description

    有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

    Input

    第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k,每两个整数之间用一个空格隔开。 
    第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

    Output

    输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输出答案对 1,000,000,007 取模的结果。

    Sample Input

    样例输入1: 
    6 3 1 
    aabaab 
    aab

    样例输入2: 
    6 3 2 
    aabaab 
    aab

    Sample Output

    样例输出1: 
    2

    样例输出2: 
    7

    Hint

    样例解释: 
    所有合法方案如下:(加下划线的部分表示取出的子串) 
    样例一:aab aab / aab aab 
    样例二:a ab aab / a aba ab / a a ba ab / aab a ab / aa b aab / aa baa b / aab aa b 
    样例三:a a b aab / a a baa b / a ab a a b / a aba a b / a a b a a b / a a ba a b / aab a a b

    数据范围: 
    对于第 1 组数据:1≤n≤500,1≤m≤50,k=1; 
    对于第 2 组至第 3 组数据:1≤n≤500,1≤m≤50,k=2; 
    对于第 4 组至第 5 组数据:1≤n≤500,1≤m≤50,k=m; 
    对于第 1 组至第 7 组数据:1≤n≤500,1≤m≤50,1≤k≤m; 
    对于第 1 组至第 9 组数据:1≤n≤1000,1≤m≤100,1≤k≤m; 
    对于所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

    Source

    NOIP2015,动态规划

    这个题很容易想到三维的dp状态,dp[i][j][k],表示A串到i位置,B串到j位置,已经用了k个串的方案数。。。

    就是很常规的字符串dp状态。。。然后转移也是字符串dp的常规套路,按a[i]==b[j]和a[i]!=a[j]分别转移一下。。。

    大致是这样:

    当a[i]!=b[j]时,

    dp[i][j][k]+=dp[i-1][j][k](跳过A串的i位置)

    a[i]==b[j]时,

    dp[i][j][k]+=dp[i-1][j-1][k-1](新开一个串);

    dp[i][j][k]+=dp[i-1][j][k](跳过A串的i位置);

    dp[i][j][k]+=dp[i-1][j-1][k](表示从上一个串接过来)

    但是第三个转移有点问题,因为要从上一个串接过来的话,需要a[i-1]==b[j-1]才能转移。

    那么我们多开一维,dp[i][j][k][0/1]第四维表示i和j是否匹配上了(把第一维滚掉)。。。

    然后转移就很simple了。。。

    // MADE BY QT666
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<iostream>
    #include<cstring>
    #define RG register
    using namespace std;
    typedef long long ll;
    const int N=100050;
    const int Mod=1e9+7;
    int n,m,k;
    int dp[2][205][205][2];
    char a[N],b[N];
    int main(){
      freopen("2015substring.in","r",stdin);
      freopen("2015substring.out","w",stdout);
      scanf("%d%d%d",&n,&m,&k);
      scanf("%s",a+1);scanf("%s",b+1);
      int cur=0;
      for(RG int i=1;i<=n;i++){
        dp[cur][0][0][1]=1;cur^=1;
        memset(dp[cur],0,sizeof(dp[cur]));
        for(RG int j=1;j<=i&&j<=m;j++){
          for(RG int p=1;p<=k;p++){
    	if(a[i]==b[j]){
    	  (dp[cur][j][p][1]+=dp[cur^1][j-1][p][1])%=Mod;
    	  (dp[cur][j][p][1]+=(dp[cur^1][j-1][p-1][1]+dp[cur^1][j-1][p-1][0])%Mod)%=Mod;
    	  (dp[cur][j][p][0]+=(dp[cur^1][j][p][0]+dp[cur^1][j][p][1])%Mod)%=Mod;
    	}
    	else{
    	  (dp[cur][j][p][0]+=(dp[cur^1][j][p][0]+dp[cur^1][j][p][1])%Mod)%=Mod;
    	}
          }
        }
      }
      printf("%d
    ",(dp[cur][m][k][0]+dp[cur][m][k][1])%Mod);
      return 0;
    }
    

      

  • 相关阅读:
    servlet的九大内置对象
    java中static、transient修饰的属性不能被序列化
    java 字节流与字符流的区别
    mac 下如何切换jdk的版本
    00 python基础--目录结构
    html 5 本地数据库-- Web Sql Database核心方法openDatabase、transaction、executeSql 详解
    shell脚本入门
    Canvas API详解
    精通CSS滤镜(filter)(实例解析)
    CSS中加号、星号及其他符号的作用
  • 原文地址:https://www.cnblogs.com/qt666/p/7470049.html
Copyright © 2020-2023  润新知