• Codeforces Round #382 (Div. 2) D. Taxes 哥德巴赫猜想


    D. Taxes

    题目链接

    http://codeforces.com/contest/735/problem/D

    题面

    Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n ≥ 2) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.

    As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1 + n2 + ... + nk = n (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition ni ≥ 2 should hold for all i from 1 to k.

    Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.

    输入

    The first line of the input contains a single integer n (2 ≤ n ≤ 2·109) — the total year income of mr. Funt.

    输出

    Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.

    样例输入

    4

    样例输出

    2

    题面

    现在给你一个数n,他的代价就是他除开本身的最大因子。

    现在你可以把n拆成几个数相加,这样代价就是那几个数的代价的和。

    问你最小的代价是啥。

    题解

    拆成素数的话,答案就是1

    根据哥德巴赫猜想,大于2的偶数都可以变成两个素数的和。

    大于5d奇数,都可以拆成三个素数的和。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    long long n;
    bool check(int x){
        for(int i=2;i*i<=x;i++){
            if(x%i==0)return false;
        }
        return true;
    }
    int main()
    {
        scanf("%lld",&n);
        if(n>2&&n%2==0){
            printf("2
    ");
        }else if(n==2){
            printf("1
    ");
        }else{
            if(check(n))cout<<"1"<<endl;
            else if(check(n-2))cout<<"2"<<endl;
            else cout<<"3"<<endl;
        }
    }
  • 相关阅读:
    SpringMVC文件下载
    Servlet3.0文件上传
    SpringMVC拦截器的使用(入门)
    SpringMVC文件上传
    SpringMVC后台数据校验
    SpringMVC@InitBinder使用方法
    C++ this指针
    C++ 析构函数
    C++ 构造函数
    C++ 成员函数的实现
  • 原文地址:https://www.cnblogs.com/qscqesze/p/6169107.html
Copyright © 2020-2023  润新知