• Codeforces Round #292 (Div. 1)A. Drazil and Factorial 构造


    A. Drazil and Factorial

    题目连接:

    http://codeforces.com/contest/516/problem/A

    Description

    Drazil is playing a math game with Varda.

    Let's define for positive integer x as a product of factorials of its digits. For example, .

    First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:

    1. x doesn't contain neither digit 0 nor digit 1.

    2. = .

    Help friends find such number.

    Input

    The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.

    The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.

    Output

    Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.

    Sample Input

    4
    1234

    Sample Output

    33222

    Hint

    题意

    定义F(x)等于x的每一位的阶乘和。

    现在给你一个a,然后让你找到一个最大的x,使得F(x)=F(a)

    题解

    a的顺序显然是没有关系的,对于每一个数的阶乘,其实只有唯一的对应最长的。

    所以直接暴力去置换,然后排个序就好了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    string ans[10]={"","","2","3","322","5","53","7","7222","7332"};
    int main()
    {
        int n;scanf("%d",&n);
        string s1,s2;cin>>s1;
        for(int i=0;i<s1.size();i++){
            s2+=ans[s1[i]-'0'];
        }
        sort(s2.begin(),s2.end());
        reverse(s2.begin(),s2.end());
        cout<<s2<<endl;
    }
  • 相关阅读:
    Java基础--day04
    Java基础--day03
    Java基础--day02
    高斯键盘设置指南
    博客园主题配置
    算法笔记--二分
    Test2反思
    树链剖分【模板】
    7.20关于莫队算法的一些初步理解
    分块(n根n复杂度)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/6040279.html
Copyright © 2020-2023  润新知