• Codeforces Round #370 (Div. 2) D. Memory and Scores 动态规划


    D. Memory and Scores

    题目连接:

    http://codeforces.com/contest/712/problem/D

    Description

    Memory and his friend Lexa are competing to get higher score in one popular computer game. Memory starts with score a and Lexa starts with score b. In a single turn, both Memory and Lexa get some integer in the range [ - k;k] (i.e. one integer among  - k,  - k + 1,  - k + 2, ...,  - 2,  - 1, 0, 1, 2, ..., k - 1, k) and add them to their current scores. The game has exactly t turns. Memory and Lexa, however, are not good at this game, so they both always get a random integer at their turn.

    Memory wonders how many possible games exist such that he ends with a strictly higher score than Lexa. Two games are considered to be different if in at least one turn at least one player gets different score. There are (2k + 1)2t games in total. Since the answer can be very large, you should print it modulo 109 + 7. Please solve this problem for Memory.

    Input

    The first and only line of input contains the four integers a, b, k, and t (1 ≤ a, b ≤ 100, 1 ≤ k ≤ 1000, 1 ≤ t ≤ 100) — the amount Memory and Lexa start with, the number k, and the number of turns respectively.

    Output

    Print the number of possible games satisfying the conditions modulo 1 000 000 007 (109 + 7) in one line.

    Sample Input

    1 2 2 1

    Sample Output

    6

    Hint

    题意

    有两个人在玩游戏,一开始分数分别为a和b,每一局,每个人可以获得分数[-k,k]之间,问你A胜过B的方案数有多少种

    题解:

    dp[i][j]表示第i轮之后,获得j分数的方案数。

    显然这个只会和上一轮有关,所以可以滚动数组优化,又显然可以前缀和优化。

    然后维护一下DP

    最后再枚举A的分数,统计一下答案就好了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 4e5+7;
    const int le = 2e5;
    const int mod = 1e9+7;
    long long a,b,k,t;
    long long dp[2][maxn];
    long long sum[maxn];
    int now=0,pre=1;
    int main()
    {
        scanf("%lld%lld%lld%lld",&a,&b,&k,&t);
        dp[now][le]=1;
        for(int i=1;i<=t;i++)
        {
            for(int j=1;j<maxn;j++)
            {
                sum[j]=dp[now][j]+sum[j-1];
                sum[j]%=mod;
            }
            swap(now,pre);
            memset(dp[now],0,sizeof(dp[now]));
            for(int j=1;j<maxn;j++)
            {
                dp[now][j]+=sum[min(maxn-1LL,j+k)]-sum[max(0LL,j-k-1)];
                dp[now][j]%=mod;
            }
        }
        for(int j=1;j<maxn;j++)
        {
            sum[j]=dp[now][j]+sum[j-1];
            sum[j]%=mod;
        }
        long long ans = 0;
        for(int j=0;j<maxn;j++)
        {
            ans += sum[a+j-b-1]%mod*dp[now][j]%mod;
            ans%=mod;
        }
        cout<<(ans+mod)%mod<<endl;
    }
  • 相关阅读:
    2016.07.13-map的使用(以leetcode1-Two Sum为例)
    2016.6.26——Maximum Depth of Binary Tree
    centos7下docker发布第一个微服务应用(Eureka)
    centos7下快速安装Nginx服务器
    java队列Queue及阻塞队列
    JConsole连接远程linux服务器配置
    mysql时间与字符串之间相互转换
    Tomcat启动报错:org.apache.catalina.LifecycleException: Failed to start component...java.util.zip.ZipException: error in opening zip file
    java post请求的表单提交和json提交简单小结
    wagon-maven-plugin实现自动打包部署到服务器
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5867961.html
Copyright © 2020-2023  润新知