• HDU 5299 Circles Game 博弈论 暴力


    Circles Game

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5299

    Description

    There are n circles on a infinitely large table.With every two circle, either one contains another or isolates from the other.They are never crossed nor tangent.
    Alice and Bob are playing a game concerning these circles.They take turn to play,Alice goes first:
    1、Pick out a certain circle A,then delete A and every circle that is inside of A.
    2、Failling to find a deletable circle within one round will lost the game.
    Now,Alice and Bob are both smart guys,who will win the game,output the winner's name.

    Input

    The first line include a positive integer T<=20,indicating the total group number of the statistic.
    As for the following T groups of statistic,the first line of every group must include a positive integer n to define the number of the circles.
    And the following lines,each line consists of 3 integers x,y and r,stating the coordinate of the circle center and radius of the circle respectively.
    n≤20000,|x|≤20000,|y|≤20000,r≤20000。

    Output

    If Alice won,output “Alice”,else output “Bob”

    Sample Input

    2
    1
    0 0 1
    6
    -100 0 90
    -50 0 1
    -20 0 1
    100 0 90
    47 0 1
    23 0 1

    Sample Output

    Alice
    Bob

    Hint

    题意

    有一个平面,平面上有n个圆,圆与圆之间只有相离和包含的关系。

    然后他们开始跑博弈论。

    每个人可以拿圆和他所包含的圆。

    如果谁不能拿了的话,那就输了。

    问你谁能赢。

    题解:

    很显然,包含和相离关系,那么就是一个森林之间的关系。

    然后把这个森林需要建立出来,这个就直接暴力就好了。

    然后后面的博弈是一个很经典的东西。

    叶子节点的SG值为0;中间节点的SG值为它的所有子节点的SG值加1 后的异或和。

    然后直接跑就好了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e5+6;
    vector<int> E[maxn];
    struct node
    {
        int x,y,r;
    };
    node a[maxn];
    int dp[maxn];
    bool cmp(node A,node B)
    {
        return A.r>B.r;
    }
    int fa[maxn];
    bool check(node A,node B)
    {
        long long k = 1ll*(A.x-B.x)*(A.x-B.x)+1ll*(A.y-B.y)*(A.y-B.y);
        return k<=1ll*A.r*A.r;
    }
    void init()
    {
        memset(a,0,sizeof(a));
        memset(fa,0,sizeof(fa));
        memset(dp,0,sizeof(dp));
        for(int i=0;i<maxn;i++)E[i].clear();
    }
    void dfs(int x,int fa)
    {
        dp[x]=0;
        for(int j=0;j<E[x].size();j++)
        {
            int v = E[x][j];
            if(v==fa)continue;
            dfs(v,x);
            dp[x]^=(dp[v]+1);
        }
    }
    void solve()
    {
        init();
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].r);
        node k;
        a[0].x=0,a[0].y=0,a[0].r=4e4+6;
        sort(a+1,a+1+n,cmp);
        for(int i=1;i<=n;i++)
        {
            for(int j=i-1;j>=0;j--)
                if(check(a[j],a[i]))
                {
                    fa[i]=j;
                    E[j].push_back(i);
                    break;
                }
        }
        dfs(0,-1);
        if(dp[0])cout<<"Alice"<<endl;
        else cout<<"Bob"<<endl;
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)solve();
    }
  • 相关阅读:
    Xpath 和Css Selector使用
    JS 基础
    python中requests.session的妙用
    HTML基础之DOM
    吃着火锅唱着歌学会Docker
    SAAS方法论
    Python操作MySQL
    Flask中session实现原理
    人的成长永远不会大于自己的思想
    Serializers 序列化组件
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5269603.html
Copyright © 2020-2023  润新知