• Educational Codeforces Round 6 F. Xors on Segments 暴力


    F. Xors on Segments

    题目连接:

    http://www.codeforces.com/contest/620/problem/F

    Description

    You are given an array with n integers ai and m queries. Each query is described by two integers (lj, rj).

    Let's define the function . The function is defined for only u ≤ v.

    For each query print the maximal value of the function f(ax, ay) over all lj ≤ x, y ≤ rj,  ax ≤ ay.

    Input

    The first line contains two integers n, m (1 ≤ n ≤ 5·104,  1 ≤ m ≤ 5·103) — the size of the array and the number of the queries.

    The second line contains n integers ai (1 ≤ ai ≤ 106) — the elements of the array a.

    Each of the next m lines contains two integers lj, rj (1 ≤ lj ≤ rj ≤ n) – the parameters of the j-th query.

    Output

    For each query print the value aj on a separate line — the maximal value of the function f(ax, ay) over all lj ≤ x, y ≤ rj,  ax ≤ ay.

    Sample Input

    6 3
    1 2 3 4 5 6
    1 6
    2 5
    3 4

    Sample Output

    7
    7
    7

    Hint

    题意

    题目中定义了f(i,j) = i^(i+1)^(i+2)^...^j

    给你n个数,然后m次询问

    每次问你l,r区间内,f(a[i],a[j])最大是多少,l<=i,j<=r

    题解:

    正解的话是莫队+字典树

    复杂度是(n+m)lognsqrt(n)

    但是这道题也有(n^2+nm)的算法,两个算法的复杂度差距不是很大

    并且第二种好写的多……

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6+5;
    int f[maxn];
    int a[maxn];
    int G[maxn];
    int l[maxn],r[maxn],ans[maxn];
    int main()
    {
        for(int i=1;i<maxn;i++)
            f[i]=f[i-1]^i;
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        for(int i=1;i<=m;i++)
            scanf("%d%d",&l[i],&r[i]);
        for(int i=1;i<=n;i++)
        {
            int mx = 0;
            for(int j=i;j<=n;j++)
            {
                int cnt = f[a[j]]^f[a[i]];
                if(a[j]>a[i])
                    cnt^=a[i];
                else
                    cnt^=a[j];
                mx = max(cnt,mx);
                G[j]=mx;
            }
            for(int j=1;j<=m;j++)
                if(l[j]<=i&&i<=r[j])
                    ans[j]=max(ans[j],G[r[j]]);
        }
        for(int i=1;i<=m;i++)
            printf("%d
    ",ans[i]);
    }
  • 相关阅读:
    TCP/IP||ARP/RARP
    TCP/IP||IP
    TCP/IP||链路层
    Struts||IQ
    SpringMVC||IQ
    TCP/IP Basic
    Spring||Mails
    Spring||Quartz
    jQuery Ajax 方法应用。
    html5的离线储存应用.
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5217153.html
Copyright © 2020-2023  润新知