• Codeforces Round #326 (Div. 2) D. Duff in Beach dp


    D. Duff in Beach

    Time Limit: 1 Sec  

    Memory Limit: 256 MB

    题目连接

    http://codeforces.com/contest/588/problem/D

    Description

    While Duff was resting in the beach, she accidentally found a strange array b0, b1, ..., bl - 1 consisting of l positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array, a0, ..., an - 1 that b can be build from a with formula: bi = ai mod n where a mod b denoted the remainder of dividing a by b.

    Duff is so curious, she wants to know the number of subsequences of b like bi1, bi2, ..., bix (0 ≤ i1 < i2 < ... < ix < l), such that:

    • 1 ≤ x ≤ k
    • For each 1 ≤ j ≤ x - 1, 
    • For each 1 ≤ j ≤ x - 1, bij ≤ bij + 1. i.e this subsequence is non-decreasing.

    Since this number can be very large, she want to know it modulo 109 + 7.

    Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.

    Input

    The first line of input contains three integers, n, l and k (1 ≤ n, kn × k ≤ 106 and 1 ≤ l ≤ 1018).

    The second line contains n space separated integers, a0, a1, ..., an - 1 (1 ≤ ai ≤ 109 for each 0 ≤ i ≤ n - 1).

    Output

    Print the answer modulo 1 000 000 007 in one line.

    Sample Input

    3 5 3
    5 9 1

    Sample Output

    10

    HINT

    题意

    给你n,l,k,然后就是告诉你b有l长度,其中是由a不停重复得到的

    然后问你一共有多少个满足条件的序列存在

    条件如下:

    1.这个序列的长度大于等于1,小于等于k

    2.这个序列在每一个块中只能选择一个数,并且都必须选择在连续的块中

    3.这个序列是单调不降的

    题解:

    dp,由于n*k<=1e6,所以我们简单的推断是dp[n][k]的,表示第i个数长度为k的序列有多少个

    其实这道题和分块差不多,在块外就用dp瞎转移

    块内就暴力就好了……

    只要把这个数据过了就好了

    3 100 3

    1 1 1

    注意是upper_bound这个东西

    代码:

    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<map>
    using namespace std;
    #define maxn 1000005
    #define mod 1000000007
    int a[maxn];
    int b[maxn];
    long long l;
    int k,n;
    long long dp[maxn];
    long long sum[maxn];
    map<int,int> HH;
    map<pair<int,int>,int> H;
    int tot = 1;
    int get(int x,int y)
    {
        if(H[make_pair(x,y)])
            return H[make_pair(x,y)];
        H[make_pair(x,y)]=tot++;
        return H[make_pair(x,y)];
    }
    int main()
    {
        scanf("%d%lld%d",&n,&l,&k);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            b[i]=a[i];
        }
        sort(a+1,a+1+n);
        for(int i=1;i<=n;i++)
            HH[a[i]] = i;
        for(int i=1;i<=n;i++)
            dp[get(i,1)]=1;
        for(int j=2;j<=k;j++)
        {
            int tot = 1;
            for(int i=1;i<=n;i++)
            {
                int kk = upper_bound(a+1,a+n+1,a[i])-(a+1);
                while(tot<=kk)
                {
                    sum[j-1] += dp[get(tot,j-1)];
                    sum[j-1] %= mod;
                    tot++;
                }
                dp[get(i,j)] = sum[j-1];
            }
        }
        for(int i=1;i<=n;i++)
        {
            sum[k] += dp[get(i,k)];
            sum[k] %= mod;
        }
        long long ans = 0;
        for(int i=1;i<=k&&i<=l/n;i++)
        {
            ans += (long long)((l/n-i+1)%mod)*sum[i];
            ans %= mod;
        }
        if(l%n==0)
        {
            cout<<ans<<endl;
            return 0;
        }
        for(int i=1;i<=l%n;i++)
        {
            for(int j=1;j<=k&&j<=(l/n+1);j++)
            {
                ans+=dp[get(HH[b[i]],j)];
                ans%=mod;
            }
        }
        cout<<ans<<endl;
    }
  • 相关阅读:
    Spring源码分析(一)
    keras默认配置
    keras中常用的初始化器
    keras手写数字识别
    tensorflow实现XOR
    sklearn PCA的使用
    git常用操作
    Microsoft Visual C++ 14.0 is required问题解决
    TensorFlow2.0提示Cannot find reference 'keras' in __init__.py
    线性回归处理非数值型数据
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4884139.html
Copyright © 2020-2023  润新知