Can you find it
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=5478Description
Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109). Please find all pairs (a, b) which satisfied the equation ak1⋅n+b1 + bk2⋅n−k2+1 = 0 (mod C)(n = 1, 2, 3, ...).
Input
There are multiple test cases (no more than 30). For each test, a single line contains four integers C, k1, b1, k2.
Output
First, please output "Case #k: ", k is the number of test case. See sample output for more detail.
Please output all pairs (a, b) in lexicographical order. (1≤a,b<C). If there is not a pair (a, b), please output -1.
Sample Input
23 1 1 2
Sample Output
Case #1:
1 22
HINT
题意
问你有多少对数,满足a^(k1⋅n+b1) + b^(k2⋅n−k2+1) = 0 (mod C)
题解:
首先你要知道,对于每个a只有唯一对应的b可以满足这个式子,因为当n=1的时候,a^(k1+b1)+b = kk*C
由于b是小于c的,所以只有一个
所以我们可以求出b来,然后我们怎么check这个b究竟是不是呢?
随机化10个数,然后随便check就好了
代码:
//qscqesze #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <bitset> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> #include <stack> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define maxn 100006 #define mod 1000000007 #define eps 1e-9 #define e exp(1.0) #define PI acos(-1) const double EP = 1E-10 ; int Num; //const int inf=0x7fffffff; const ll inf=999999999; inline ll read() { ll x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } //************************************************************************************* ll fMul(int m,ll n,int k) { ll cc = m; ll b = 1; while (n > 0) { if (n & 1LL) { b = (b*cc); if(b>=k) b%=k; } n = n >> 1LL ; cc = (cc*cc)%k; if(cc>=k)cc%=k; } return b; } int main() { //freopen("out.txt","r",stdin); //freopen("out2.txt","w",stdout); srand(time(NULL)); int tot = 1; int c ,k1 ,b1 ,k2; while(scanf("%d%d%d%d",&c,&k1,&b1,&k2)!=EOF) { printf("Case #%d: ",tot++); int flag1 = 0; for(int i=1;i<c;i++) { int j=c-fMul(i,k1*1+b1,c); int flag = 1; for(int k=1;k<=15;k++) { ll tt = rand()%c+1; ll ttt1 = k1, ttt2 = k2,ttt3 = b1; if((fMul(i,ttt1*tt+ttt3,c)+fMul(j,ttt2*tt-ttt2+1LL,c))%c!=0) { flag = 0; break; } } if(flag) { printf("%d %d ",i,j); flag1=1; } } if(!flag1) printf("-1 "); } }