• Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题


    C. p-binary

    Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.

    For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).

    The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.

    For example, if p=0 we can represent 7 as 20+21+22.

    And if p=−9 we can represent 7 as one number (24−9).

    Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).

    Input

    The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).

    Output

    If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.

    Examples

    input
    24 0
    output
    2

    Note

    0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).

    In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).

    In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.

    In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.

    In the fifth sample case, no representation is possible.

    题意

    定义p-binary为2^x+p

    现在给你一个数x,和一个p。

    问你最少用多少个p-binary能构造出x,如果没有输出-1

    题解

    转化为:

    x = 2^x1 + 2^x2 + ... + 2^xn + n*p

    首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。

    另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。

    答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    int Count(int x){
        int number=0;
        for(;x;x-=x&-x){
            number++;
        }
        return number;
    }
    int main(){
        int n,p,ans=0;
        scanf("%d%d",&n,&p);
        while(1){
            n-=p;
            ans++;
            int cnt=Count(n);
            if(ans>n){
                cout<<"-1"<<endl;
                return 0;
            }
            if(cnt<=ans){
                cout<<ans<<endl;
                return 0;
            }
        }
    }
  • 相关阅读:
    asp.net 正则表达式
    字符串分隔
    用定时器实现逐渐放大层的功能
    js获取剪贴板内容
    使用无线网卡共享上网
    使用事件探查器跟踪sqlserver进程
    document.all.WebBrowser.ExecWB
    (转)JAVA与.NET DES加密解密
    web打印的实现
    关于div的定位
  • 原文地址:https://www.cnblogs.com/qscqesze/p/11774702.html
Copyright © 2020-2023  润新知