Description
给定一个长度为n的区间,询问前k大的区间和,区间长度(in [L, R])。 $ n, k <= 500000$
Solution
首先求前缀和。把一个区间拆成两个前缀和之差。
对于一个固定的右端点。我们首先需要最小化左端点。那么我们就在题目条件允许的范围内先求出左端点最小的位置, 但是一个区间的次大值可能超过别的区间的最大值, 这很麻烦。
开一个堆, 维护一个三元组(Pos, Kth, Val), 表示以Pos为右端点,本次查到区间第Kth大,值为Val。
然后把一个区间从堆中取出来时, 就把他的(Pos, Kth + 1, Val_)加入堆。
然后只要取k次即可。
时间复杂度(O((n + k)log_{2}^{n}))
反思
刚刚开始想到把每个右端点的左端点按照大小都加进小根堆, 小根堆大小为K,如果超过就弹出一个。 如果当前值小于堆顶就break, 然后就被卡T到8s
最后发现,其实你并不需要把全部的都加入堆,因为只要当前的区间被弹出,才有可能用他的次大值。
所以我们只要贪心取最大值就可以的。
#include<bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define clar(a, b) memset((a), (b), sizeof(a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Debug(s) debug("The massage in line %d, Function %s: %s
", __LINE__, __FUNCTION__, s)
typedef long long LL;
typedef long double LD;
const int BUF_SIZE = (int)1e6 + 10;
struct fastIO {
char buf[BUF_SIZE], buf1[BUF_SIZE];
int cur, cur1;
FILE *in, *out;
fastIO() {
cur = BUF_SIZE, in = stdin, out = stdout;
cur1 = 0;
}
inline char getchar() {
if(cur == BUF_SIZE) fread(buf, BUF_SIZE, 1, in), cur = 0;
return *(buf + (cur++));
}
inline void putchar(char ch) {
*(buf1 + (cur1++)) = ch;
if (cur1 == BUF_SIZE) fwrite(buf1, BUF_SIZE, 1, out), cur1 = 0;
}
inline int flush() {
if (cur1 > 0) fwrite(buf1, cur1, 1, out);
return cur1 = 0;
}
}IO;
#define getchar IO.getchar
#define putchar IO.putchar
int read() {
char ch = getchar();
int x = 0, flag = 1;
for(;!isdigit(ch); ch = getchar()) if(ch == '-') flag *= -1;
for(;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
return x * flag;
}
void write(int x) {
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar(x % 10 + 48);
}
void putString(char s[], char EndChar = '
') {
rep(i, 0, strlen(s) - 1) putchar(*(s + i));
if(~EndChar) putchar(EndChar);
}
#define Maxn 500009
int n, k, L, R, a[Maxn];
LL s[Maxn];
template <typename T, int (*Cmp)(T a, T b)> struct Heap {
T a[Maxn];
int len;
void push(T val) {
a[++len] = val;
push_heap(a + 1, a + len + 1, Cmp);
}
T pop() { pop_heap(a + 1, a + len + 1, Cmp); return a[len--];}
T top() {return a[1];}
T empty() { return !len;}
};
LL W[Maxn], d, Ns[Maxn];
namespace Chairman {
int t[Maxn * 64], lc[Maxn * 64], rc[Maxn * 64], amt, rt[Maxn];
int build(int l, int r) {
int u = ++amt, mid = (l + r) >> 1;
if(l == r) return u;
lc[u] = build(l, mid);
rc[u] = build(mid + 1, r);
return u;
}
int modify(int rt, int l, int r, int pos) {
int mid = (l + r) >> 1, u = ++amt;
t[u] = t[rt] + 1; lc[u] = lc[rt], rc[u] = rc[rt];
if(l == r) return u;
(pos <= mid) ? (lc[u] = modify(lc[rt], l, mid, pos)) : (rc[u] = modify(rc[rt], mid + 1, r, pos));
return u;
}
int query(int rt0, int rt1, int l, int r, int pos) {
if(l == r) return l;
/**/ int res = t[lc[rt1]] - t[lc[rt0]], mid = (l + r) >> 1;
return (res >= pos) ? (query(lc[rt0], lc[rt1], l, mid, pos)) : (query(rc[rt0], rc[rt1], mid + 1, r, pos - res));
}
}
namespace INIT {
void Main() {
n = read(), k = read(); L = read(), R = read();
rep(i, 1, n) a[i] = read(), W[i + 1] = (s[i] = s[i - 1] + a[i]);
sort(W + 1, W + n + 2);
d = unique(W + 1, W + n + 2) - W - 1;
rep(i, 0, n) Ns[i] = lower_bound(W + 1, W + d + 1, s[i]) - W;
}
}
namespace SOLVE {
using namespace Chairman;
struct node {
int pos, kth;
LL val;
};
int cmp(node tarA, node tarB) { return tarA.val < tarB.val;}
Heap <node, cmp> hep;
void Main() {
rt[0] = build(1, d), rt[1] = modify(rt[0], 1, d, Ns[0]);
rep(i, 1, n) rt[i + 1] = modify(rt[i], 1, d, Ns[i]);
rep(i, 1, n) {
int bound1 = max(i - R, 0), bound2 = i - L;
if(bound2 < bound1) continue;
int cur = query(rt[bound1], rt[bound2 + 1], 1, d, 1);
hep.push((node){i, 1, s[i] - W[cur]});
}
LL ans = 0;
rep(i, 1, k) {
node Tmp = hep.pop();
ans += Tmp.val;
int bound1 = max(Tmp.pos - R, 0), bound2 = Tmp.pos - L;
if(Tmp.kth + 1 > bound2 - bound1 + 1) continue;
int cur = query(rt[bound1], rt[bound2 + 1], 1, d, Tmp.kth + 1);
hep.push((node){Tmp.pos, Tmp.kth + 1, s[Tmp.pos] - W[cur]});
}
cout << ans << endl;
}
}
int main() {
#ifdef Qrsikno
freopen("BZOJ2006.in", "r", stdin);
freopen("BZOJ2006.out", "w", stdout);
#endif
INIT :: Main();
SOLVE :: Main();
#ifdef Qrsikno
debug("
Running time: %.3lf(s)
", clock() * 1.0 / CLOCKS_PER_SEC);
#endif
return IO.flush();
}