• 计数排序


    算法导论:

    • 任意一个比较排序算法,在最坏的情况下,至少要做n*lg(n)次的比较,因此堆排序与归并排序是渐近最优的比较排序算法
    • 但计数排序、基数排序和桶排序都不采用比较的方式来确定元素的顺序,因此下界n*lg(n)对它们并不适用

    计数排序假设被排序的元素都在范围[0, k]中,k为正整数,当k=O(n)的时候,计数排序的运行时间为O(n),计数排序是稳定的

    代码:

     1 package sorts;
     2 
     3 import java.util.Arrays;
     4 import java.util.Random;
     5 
     6 public class CountingSort {
     7     /**
     8      * @param a the target array
     9      * @param b the array to store the result of the sort
    10      * @param k in the target array, each element is in the range [0, k]
    11      * */
    12     public static void sort(int[] a, int[] b, int k) {
    13         int[] c = new int[k+1]; // counting array
    14         for (int i = 0; i < k; i++) {
    15             c[i] = 0;
    16         }
    17         for (int i = 0; i < a.length; i++) {
    18             ++c[a[i]]; // c[x] is the number of elements in 'a' equal to x.
    19         }
    20         for (int i = 1; i <= k; i++) {
    21             c[i] = c[i] + c[i-1]; // c[x] is the number of elements in 'a' no more than x.
    22         }
    23         for (int i = a.length - 1; i >= 0; i--) {
    24             b[c[a[i]]-1] = a[i]; // convert to index, must subtract 1
    25             --c[a[i]];
    26         }
    27     }
    28     
    29     // test
    30     public static void main(String[] args) {
    31         Random random = new Random();
    32         int num = 10;
    33         int bound = 100;
    34         int[] a = new int[num];
    35         int[] b = new int[num];
    36         for (int i = 0; i < num; i++) {
    37             a[i] = random.nextInt(bound);
    38         }
    39         CountingSort.sort(a, b, bound-1);
    40         System.out.println(Arrays.toString(b));
    41     }
    42 }
  • 相关阅读:
    ZZ 一些有意思的算法代码
    ff 怎样让新打开的标签就放在当前页面的右边
    111
    Windows平台下GO语言编译器(GOwindows)
    My Bookmarks
    使用googleperftools的tcmalloc
    memcached安装及测试
    erlang 入门(1)
    MS UI Automation
    twisted: echo server
  • 原文地址:https://www.cnblogs.com/qrlozte/p/3963203.html
Copyright © 2020-2023  润新知