• 红黑树


    参考资料:

    • http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html
    • 算法导论第13章
    • http://blog.csdn.net/skylinesky/article/details/6610950

    代码:(我添上了toString,以及改写了main中的测试代码)

    package trees;
    
    /*************************************************************************
     *  Compilation:  javac RedBlackBST.java
     *  Execution:    java RedBlackBST < input.txt
     *  Dependencies: StdIn.java System.out.java  
     *  Data files:   http://algs4.cs.princeton.edu/33balanced/tinyST.txt  
     *    
     *  A symbol table implemented using a left-leaning red-black BST.
     *  This is the 2-3 version.
     *
     *  Note: commented out assertions because DrJava now enables assertions
     *        by default.
     *
     *  % more tinyST.txt
     *  S E A R C H E X A M P L E
     *  
     *  % java RedBlackBST < tinyST.txt
     *  A 8
     *  C 4
     *  E 12
     *  H 5
     *  L 11
     *  M 9
     *  P 10
     *  R 3
     *  S 0
     *  X 7
     *
     *************************************************************************/
    
    import java.util.Arrays;
    import java.util.Collections;
    import java.util.HashMap;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.Map;
    import java.util.NoSuchElementException;
    import java.util.Queue;
    import java.util.Random;
    
    public class RedBlackBST<Key extends Comparable<Key>, Value> {
    
        private static final boolean RED   = true;
        private static final boolean BLACK = false;
    
        private Node root;     // root of the BST
    
        // BST helper node data type
        private class Node {
            private Key key;           // key
            private Value val;         // associated data
            private Node left, right;  // links to left and right subtrees
            private boolean color;     // color of parent link
            private int N;             // subtree count
    
            public Node(Key key, Value val, boolean color, int N) {
                this.key = key;
                this.val = val;
                this.color = color;
                this.N = N;
            }
            
            @Override
            public String toString() {
                return "["+key+","+val+","+(color==RED?"R":"B")+"]";
            }
        }
    
       /*************************************************************************
        *  Node helper methods
        *************************************************************************/
        // is node x red; false if x is null ?
        private boolean isRed(Node x) {
            if (x == null) return false;
            return (x.color == RED);
        }
    
        // number of node in subtree rooted at x; 0 if x is null
        private int size(Node x) {
            if (x == null) return 0;
            return x.N;
        } 
    
    
       /*************************************************************************
        *  Size methods
        *************************************************************************/
    
        // return number of key-value pairs in this symbol table
        public int size() { return size(root); }
    
        // is this symbol table empty?
        public boolean isEmpty() {
            return root == null;
        }
    
       /*************************************************************************
        *  Standard BST search
        *************************************************************************/
    
        // value associated with the given key; null if no such key
        public Value get(Key key) { return get(root, key); }
    
        // value associated with the given key in subtree rooted at x; null if no such key
        private Value get(Node x, Key key) {
            while (x != null) {
                int cmp = key.compareTo(x.key);
                if      (cmp < 0) x = x.left;
                else if (cmp > 0) x = x.right;
                else              return x.val;
            }
            return null;
        }
    
        // is there a key-value pair with the given key?
        public boolean contains(Key key) {
            return (get(key) != null);
        }
    
        // is there a key-value pair with the given key in the subtree rooted at x?
        private boolean contains(Node x, Key key) {
            return (get(x, key) != null);
        }
    
       /*************************************************************************
        *  Red-black insertion
        *************************************************************************/
    
        // insert the key-value pair; overwrite the old value with the new value
        // if the key is already present
        public void put(Key key, Value val) {
            root = put(root, key, val);
            root.color = BLACK;
            // assert check();
        }
    
        // insert the key-value pair in the subtree rooted at h
        private Node put(Node h, Key key, Value val) { 
            if (h == null) return new Node(key, val, RED, 1);
    
            int cmp = key.compareTo(h.key);
            if      (cmp < 0) h.left  = put(h.left,  key, val); 
            else if (cmp > 0) h.right = put(h.right, key, val); 
            else              h.val   = val;
    
            // fix-up any right-leaning links
            if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
            if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
            if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
            h.N = size(h.left) + size(h.right) + 1;
    
            return h;
        }
    
       /*************************************************************************
        *  Red-black deletion
        *************************************************************************/
    
        // delete the key-value pair with the minimum key
        public void deleteMin() {
            if (isEmpty()) throw new NoSuchElementException("BST underflow");
    
            // if both children of root are black, set root to red
            if (!isRed(root.left) && !isRed(root.right))
                root.color = RED;
    
            root = deleteMin(root);
            if (!isEmpty()) root.color = BLACK;
            // assert check();
        }
    
        // delete the key-value pair with the minimum key rooted at h
        private Node deleteMin(Node h) { 
            if (h.left == null)
                return null;
    
            if (!isRed(h.left) && !isRed(h.left.left))
                h = moveRedLeft(h);
    
            h.left = deleteMin(h.left);
            return balance(h);
        }
    
    
        // delete the key-value pair with the maximum key
        public void deleteMax() {
            if (isEmpty()) throw new NoSuchElementException("BST underflow");
    
            // if both children of root are black, set root to red
            if (!isRed(root.left) && !isRed(root.right))
                root.color = RED;
    
            root = deleteMax(root);
            if (!isEmpty()) root.color = BLACK;
            // assert check();
        }
    
        // delete the key-value pair with the maximum key rooted at h
        private Node deleteMax(Node h) { 
            if (isRed(h.left))
                h = rotateRight(h);
    
            if (h.right == null)
                return null;
    
            if (!isRed(h.right) && !isRed(h.right.left))
                h = moveRedRight(h);
    
            h.right = deleteMax(h.right);
    
            return balance(h);
        }
    
        // delete the key-value pair with the given key
        public void delete(Key key) { 
            if (!contains(key)) {
                System.err.println("symbol table does not contain " + key);
                return;
            }
    
            // if both children of root are black, set root to red
            if (!isRed(root.left) && !isRed(root.right))
                root.color = RED;
    
            root = delete(root, key);
            if (!isEmpty()) root.color = BLACK;
            // assert check();
        }
    
        // delete the key-value pair with the given key rooted at h
        private Node delete(Node h, Key key) { 
            // assert contains(h, key);
    
            if (key.compareTo(h.key) < 0)  {
                if (!isRed(h.left) && !isRed(h.left.left))
                    h = moveRedLeft(h);
                h.left = delete(h.left, key);
            }
            else {
                if (isRed(h.left))
                    h = rotateRight(h);
                if (key.compareTo(h.key) == 0 && (h.right == null))
                    return null;
                if (!isRed(h.right) && !isRed(h.right.left))
                    h = moveRedRight(h);
                if (key.compareTo(h.key) == 0) {
                    Node x = min(h.right);
                    h.key = x.key;
                    h.val = x.val;
                    // h.val = get(h.right, min(h.right).key);
                    // h.key = min(h.right).key;
                    h.right = deleteMin(h.right);
                }
                else h.right = delete(h.right, key);
            }
            return balance(h);
        }
    
       /*************************************************************************
        *  red-black tree helper functions
        *************************************************************************/
    
        // make a left-leaning link lean to the right
        private Node rotateRight(Node h) {
            // assert (h != null) && isRed(h.left);
            Node x = h.left;
            h.left = x.right;
            x.right = h;
            x.color = x.right.color;
            x.right.color = RED;
            x.N = h.N;
            h.N = size(h.left) + size(h.right) + 1;
            return x;
        }
    
        // make a right-leaning link lean to the left
        private Node rotateLeft(Node h) {
            // assert (h != null) && isRed(h.right);
            Node x = h.right;
            h.right = x.left;
            x.left = h;
            x.color = x.left.color;
            x.left.color = RED;
            x.N = h.N;
            h.N = size(h.left) + size(h.right) + 1;
            return x;
        }
    
        // flip the colors of a node and its two children
        private void flipColors(Node h) {
            // h must have opposite color of its two children
            // assert (h != null) && (h.left != null) && (h.right != null);
            // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))
            //     || (isRed(h)  && !isRed(h.left) && !isRed(h.right));
            h.color = !h.color;
            h.left.color = !h.left.color;
            h.right.color = !h.right.color;
        }
    
        // Assuming that h is red and both h.left and h.left.left
        // are black, make h.left or one of its children red.
        private Node moveRedLeft(Node h) {
            // assert (h != null);
            // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
    
            flipColors(h);
            if (isRed(h.right.left)) { 
                h.right = rotateRight(h.right);
                h = rotateLeft(h);
            }
            return h;
        }
    
        // Assuming that h is red and both h.right and h.right.left
        // are black, make h.right or one of its children red.
        private Node moveRedRight(Node h) {
            // assert (h != null);
            // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
            flipColors(h);
            if (isRed(h.left.left)) { 
                h = rotateRight(h);
            }
            return h;
        }
    
        // restore red-black tree invariant
        private Node balance(Node h) {
            // assert (h != null);
    
            if (isRed(h.right))                      h = rotateLeft(h);
            if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
            if (isRed(h.left) && isRed(h.right))     flipColors(h);
    
            h.N = size(h.left) + size(h.right) + 1;
            return h;
        }
    
    
       /*************************************************************************
        *  Utility functions
        *************************************************************************/
    
        // height of tree (1-node tree has height 0)
        public int height() { return height(root); }
        private int height(Node x) {
            if (x == null) return -1;
            return 1 + Math.max(height(x.left), height(x.right));
        }
    
       /*************************************************************************
        *  Ordered symbol table methods.
        *************************************************************************/
    
        // the smallest key; null if no such key
        public Key min() {
            if (isEmpty()) return null;
            return min(root).key;
        } 
    
        // the smallest key in subtree rooted at x; null if no such key
        private Node min(Node x) { 
            // assert x != null;
            if (x.left == null) return x; 
            else                return min(x.left); 
        } 
    
        // the largest key; null if no such key
        public Key max() {
            if (isEmpty()) return null;
            return max(root).key;
        } 
    
        // the largest key in the subtree rooted at x; null if no such key
        private Node max(Node x) { 
            // assert x != null;
            if (x.right == null) return x; 
            else                 return max(x.right); 
        } 
    
        // the largest key less than or equal to the given key
        public Key floor(Key key) {
            Node x = floor(root, key);
            if (x == null) return null;
            else           return x.key;
        }    
    
        // the largest key in the subtree rooted at x less than or equal to the given key
        private Node floor(Node x, Key key) {
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if (cmp == 0) return x;
            if (cmp < 0)  return floor(x.left, key);
            Node t = floor(x.right, key);
            if (t != null) return t; 
            else           return x;
        }
    
        // the smallest key greater than or equal to the given key
        public Key ceiling(Key key) {  
            Node x = ceiling(root, key);
            if (x == null) return null;
            else           return x.key;  
        }
    
        // the smallest key in the subtree rooted at x greater than or equal to the given key
        private Node ceiling(Node x, Key key) {  
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if (cmp == 0) return x;
            if (cmp > 0)  return ceiling(x.right, key);
            Node t = ceiling(x.left, key);
            if (t != null) return t; 
            else           return x;
        }
    
    
        // the key of rank k
        public Key select(int k) {
            if (k < 0 || k >= size())  return null;
            Node x = select(root, k);
            return x.key;
        }
    
        // the key of rank k in the subtree rooted at x
        private Node select(Node x, int k) {
            // assert x != null;
            // assert k >= 0 && k < size(x);
            int t = size(x.left); 
            if      (t > k) return select(x.left,  k); 
            else if (t < k) return select(x.right, k-t-1); 
            else            return x; 
        } 
    
        // number of keys less than key
        public int rank(Key key) {
            return rank(key, root);
        } 
    
        // number of keys less than key in the subtree rooted at x
        private int rank(Key key, Node x) {
            if (x == null) return 0; 
            int cmp = key.compareTo(x.key); 
            if      (cmp < 0) return rank(key, x.left); 
            else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); 
            else              return size(x.left); 
        } 
    
       /***********************************************************************
        *  Range count and range search.
        ***********************************************************************/
    
        // all of the keys, as an Iterable
        public Iterable<Key> keys() {
            return keys(min(), max());
        }
    
        // the keys between lo and hi, as an Iterable
        public Iterable<Key> keys(Key lo, Key hi) {
            Queue<Key> queue = new LinkedList<Key>();
            // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
            keys(root, queue, lo, hi);
            return queue;
        } 
    
        // add the keys between lo and hi in the subtree rooted at x
        // to the queue
        private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { 
            if (x == null) return; 
            int cmplo = lo.compareTo(x.key); 
            int cmphi = hi.compareTo(x.key); 
            if (cmplo < 0) keys(x.left, queue, lo, hi); 
            if (cmplo <= 0 && cmphi >= 0) queue.offer(x.key); 
            if (cmphi > 0) keys(x.right, queue, lo, hi); 
        } 
    
        // number keys between lo and hi
        public int size(Key lo, Key hi) {
            if (lo.compareTo(hi) > 0) return 0;
            if (contains(hi)) return rank(hi) - rank(lo) + 1;
            else              return rank(hi) - rank(lo);
        }
    
    
       /*************************************************************************
        *  Check integrity of red-black BST data structure
        *************************************************************************/
        private boolean check() {
            if (!isBST())            System.out.println("Not in symmetric order");
            if (!isSizeConsistent()) System.out.println("Subtree counts not consistent");
            if (!isRankConsistent()) System.out.println("Ranks not consistent");
            if (!is23())             System.out.println("Not a 2-3 tree");
            if (!isBalanced())       System.out.println("Not balanced");
            return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
        }
    
        // does this binary tree satisfy symmetric order?
        // Note: this test also ensures that data structure is a binary tree since order is strict
        private boolean isBST() {
            return isBST(root, null, null);
        }
    
        // is the tree rooted at x a BST with all keys strictly between min and max
        // (if min or max is null, treat as empty constraint)
        // Credit: Bob Dondero's elegant solution
        private boolean isBST(Node x, Key min, Key max) {
            if (x == null) return true;
            if (min != null && x.key.compareTo(min) <= 0) return false;
            if (max != null && x.key.compareTo(max) >= 0) return false;
            return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
        } 
    
        // are the size fields correct?
        private boolean isSizeConsistent() { return isSizeConsistent(root); }
        private boolean isSizeConsistent(Node x) {
            if (x == null) return true;
            if (x.N != size(x.left) + size(x.right) + 1) return false;
            return isSizeConsistent(x.left) && isSizeConsistent(x.right);
        } 
    
        // check that ranks are consistent
        private boolean isRankConsistent() {
            for (int i = 0; i < size(); i++)
                if (i != rank(select(i))) return false;
            for (Key key : keys())
                if (key.compareTo(select(rank(key))) != 0) return false;
            return true;
        }
    
        // Does the tree have no red right links, and at most one (left)
        // red links in a row on any path?
        private boolean is23() { return is23(root); }
        private boolean is23(Node x) {
            if (x == null) return true;
            if (isRed(x.right)) return false;
            if (x != root && isRed(x) && isRed(x.left))
                return false;
            return is23(x.left) && is23(x.right);
        } 
    
        // do all paths from root to leaf have same number of black edges?
        private boolean isBalanced() { 
            int black = 0;     // number of black links on path from root to min
            Node x = root;
            while (x != null) {
                if (!isRed(x)) black++;
                x = x.left;
            }
            return isBalanced(root, black);
        }
    
        // does every path from the root to a leaf have the given number of black links?
        private boolean isBalanced(Node x, int black) {
            if (x == null) return black == 0;
            if (!isRed(x)) black--;
            return isBalanced(x.left, black) && isBalanced(x.right, black);
        } 
        
        /**
         * in-order traverse
         * */
        @Override
        public String toString() {
            StringBuilder builder = new StringBuilder("[");
            inOrderTraverse(root, builder);
            builder.append("]");
            return builder.toString();
        }
        // helper for toString
        private void inOrderTraverse(Node node, StringBuilder builder) {
            if (node != null) {
                inOrderTraverse(node.left, builder);
                builder.append(node+",");
                inOrderTraverse(node.right, builder);
            }
        }
    
    
       /*****************************************************************************
        *  Test client
        *****************************************************************************/
        public static void main(String[] args) { 
            RedBlackBST<String, Integer> rbTree = new RedBlackBST<String, Integer>();
            List<String> keys = new LinkedList<>();
            List<Integer> vals = new LinkedList<>();
            int upperBound = 50;
            Random random = new Random();
            for (int i = 0; i < 6; ++i) {
                int val = random.nextInt(upperBound);
                keys.add(Integer.toString(val));
                vals.add(val);
            }
            
            System.out.println("----put----");
            
            for (int i = 0; i < keys.size(); i++) {
                rbTree.put(keys.get(i), vals.get(i));
                System.out.println(rbTree);
            }
            
            System.out.println("----get----");
            
            Collections.shuffle(keys);
            for (int i = 0; i < keys.size(); i++) {
                System.out.println(
                        rbTree.get(keys.get(i)));
            }
            
            System.out.println("----delete----");
            
            Collections.shuffle(keys);
            for (int i = 0; i < keys.size(); i++) {
                System.out.println(rbTree);
                rbTree.delete(keys.get(i));
            }
            
        }
    }
  • 相关阅读:
    PBR(基于物理的渲染)学习笔记
    iOS应用千万级架构开篇
    iOS应用千万级架构:性能优化与卡顿监控
    iOS应用千万级架构:自动埋点与曝光
    iOS应用千万级架构:存储持久化
    iOS应用千万级架构:MVVM框架
    Spring Boot入门系列(十七)整合Mybatis,创建自定义mapper 实现多表关联查询!
    Spring Boot入门系列(十六)使用pagehelper实现分页功能
    Spring Boot入门系列(十五)Spring Boot 开发环境热部署
    说迷茫
  • 原文地址:https://www.cnblogs.com/qrlozte/p/3949609.html
Copyright © 2020-2023  润新知