• mnist数据集探究


    一、mnist的属性和方法

    为了方便我只检查了后20个属性和方法

    1 from tensorflow.examples.tutorials.mnist import input_data
    2 
    3 mnist = input_data.read_data_sets('G:MNIST DATABASEMNIST_data',one_hot=True)
    4 print(dir(mnist)[-20:])

    1:从tensorflow.examples.tutorials.mnist库中导入input_data文件

    3:调用input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过One-Hot编码;

    4:打印mnist后20个属性和方法

    结果:

    Extracting G:MNIST DATABASEMNIST_data rain-labels-idx1-ubyte.gz
    WARNING:tensorflow:From C:Program FilesAnaconda3libsite-packages ensorflowcontriblearnpythonlearndatasetsmnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.one_hot on tensors.
    Extracting G:MNIST DATABASEMNIST_data 10k-images-idx3-ubyte.gz
    WARNING:tensorflow:From C:Program FilesAnaconda3libsite-packages ensorflowcontriblearnpythonlearndatasetsmnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    Extracting G:MNIST DATABASEMNIST_data 10k-labels-idx1-ubyte.gz
    ['__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subclasshook__', '_asdict', '_fields', '_make', '_replace', '_source', 'count', 'index', 'test', 'train', 'validation']

    二、查看mnist里的训练集、验证集、测试集包括多少图片

    train集合有55000张图片,validation集合有5000张图片,这两个集合组成MNIST本身提供的训练数据集

    1 print('训练数据数量',mnist.train.num_examples)
    2 print('验证数据数量',mnist.validation.num_examples)
    3 print('测试数据数量',mnist.test.num_examples)
    4 
    5 #结果:
    6 训练数据数量 55000
    7 验证数据数量 5000
    8 测试数据数量 10000

    三、mnist.train.next_batch()函数

    input_data.read_data_sets函数生成的类提供的mnist.train.next_batch()函数,它可以从所有的训练数据中读取一小部分作为一个训练batch

    1 batch_size = 100
    #从train集合中选取100个训练数据,100个训练数据的标签 2 xs,ys = mnist.train.next_batch(batch_size) 3 print('xs shape',xs.shape) 4 print('ys shape',ys.shape) 5 6 #结果: 7 xs shape (100, 784) 8 ys shape (100, 10)

    四、mnist.train.images观察

    mnist.train.images的数据类型是数组,每一个数据是一位数组,每个数据一维数组的长度是784,即每张图片的像素数
      1 print('train集合数据的类型:',type(mnist.train.images),'train集合数据矩阵形状:',mnist.train.images.shape)
      2 print('train集合数据标签的类型:',type(mnist.train.labels),'train集合数据标签矩阵形状:',mnist.train.labels.shape)
      3 
      4 #结果:
      5 train集合数据的类型: <class 'numpy.ndarray'> train集合数据矩阵形状: (55000, 784)
      6 train集合数据标签的类型: <class 'numpy.ndarray'> train集合数据标签矩阵形状: (55000, 10)
      7 
      8 print('train集合第一个数据长度、内容:',len(mnist.train.images[0]),mnist.train.images[0])
      9 print('train集合第一个数据标签长度、内容:',len(mnist.train.labels[0]),mnist.train.labels[0])
     10 
     11 结果:
     12 train集合第一个数据长度、内容: 784 [ 0.          0.          0.          0.          0.          0.          0.
     13   0.          0.          0.          0.          0.          0.          0.
     14   0.          0.          0.          0.          0.          0.          0.
     15   0.          0.          0.          0.          0.          0.          0.
     16   0.          0.          0.          0.          0.          0.          0.
     17   0.          0.          0.          0.          0.          0.          0.
     18   0.          0.          0.          0.          0.          0.          0.
     19   0.          0.          0.          0.          0.          0.          0.
     20   0.          0.          0.          0.          0.          0.          0.
     21   0.          0.          0.          0.          0.          0.          0.
     22   0.          0.          0.          0.          0.          0.          0.
     23   0.          0.          0.          0.          0.          0.          0.
     24   0.          0.          0.          0.          0.          0.          0.
     25   0.          0.          0.          0.          0.          0.          0.
     26   0.          0.          0.          0.          0.          0.          0.
     27   0.          0.          0.          0.          0.          0.          0.
     28   0.          0.          0.          0.          0.          0.          0.
     29   0.          0.          0.          0.          0.          0.          0.
     30   0.          0.          0.          0.          0.          0.          0.
     31   0.          0.          0.          0.          0.          0.          0.
     32   0.          0.          0.          0.          0.          0.          0.
     33   0.          0.          0.          0.          0.          0.          0.
     34   0.          0.          0.          0.          0.          0.          0.
     35   0.          0.          0.          0.          0.          0.          0.
     36   0.          0.          0.          0.          0.          0.          0.
     37   0.          0.          0.          0.          0.          0.          0.
     38   0.          0.          0.          0.          0.          0.          0.
     39   0.          0.          0.          0.          0.          0.          0.
     40   0.          0.          0.          0.          0.          0.          0.
     41   0.          0.          0.          0.          0.38039219  0.37647063
     42   0.3019608   0.46274513  0.2392157   0.          0.          0.          0.
     43   0.          0.          0.          0.          0.          0.          0.
     44   0.          0.          0.          0.          0.35294119  0.5411765
     45   0.92156869  0.92156869  0.92156869  0.92156869  0.92156869  0.92156869
     46   0.98431379  0.98431379  0.97254908  0.99607849  0.96078438  0.92156869
     47   0.74509805  0.08235294  0.          0.          0.          0.          0.
     48   0.          0.          0.          0.          0.          0.
     49   0.54901963  0.98431379  0.99607849  0.99607849  0.99607849  0.99607849
     50   0.99607849  0.99607849  0.99607849  0.99607849  0.99607849  0.99607849
     51   0.99607849  0.99607849  0.99607849  0.99607849  0.74117649  0.09019608
     52   0.          0.          0.          0.          0.          0.          0.
     53   0.          0.          0.          0.88627458  0.99607849  0.81568635
     54   0.78039223  0.78039223  0.78039223  0.78039223  0.54509807  0.2392157
     55   0.2392157   0.2392157   0.2392157   0.2392157   0.50196081  0.8705883
     56   0.99607849  0.99607849  0.74117649  0.08235294  0.          0.          0.
     57   0.          0.          0.          0.          0.          0.
     58   0.14901961  0.32156864  0.0509804   0.          0.          0.          0.
     59   0.          0.          0.          0.          0.          0.          0.
     60   0.13333334  0.83529419  0.99607849  0.99607849  0.45098042  0.          0.
     61   0.          0.          0.          0.          0.          0.          0.
     62   0.          0.          0.          0.          0.          0.          0.
     63   0.          0.          0.          0.          0.          0.          0.
     64   0.          0.32941177  0.99607849  0.99607849  0.91764712  0.          0.
     65   0.          0.          0.          0.          0.          0.          0.
     66   0.          0.          0.          0.          0.          0.          0.
     67   0.          0.          0.          0.          0.          0.          0.
     68   0.          0.32941177  0.99607849  0.99607849  0.91764712  0.          0.
     69   0.          0.          0.          0.          0.          0.          0.
     70   0.          0.          0.          0.          0.          0.          0.
     71   0.          0.          0.          0.          0.          0.          0.
     72   0.41568631  0.6156863   0.99607849  0.99607849  0.95294124  0.20000002
     73   0.          0.          0.          0.          0.          0.          0.
     74   0.          0.          0.          0.          0.          0.          0.
     75   0.          0.          0.          0.09803922  0.45882356  0.89411771
     76   0.89411771  0.89411771  0.99215692  0.99607849  0.99607849  0.99607849
     77   0.99607849  0.94117653  0.          0.          0.          0.          0.
     78   0.          0.          0.          0.          0.          0.          0.
     79   0.          0.          0.          0.26666668  0.4666667   0.86274517
     80   0.99607849  0.99607849  0.99607849  0.99607849  0.99607849  0.99607849
     81   0.99607849  0.99607849  0.99607849  0.55686277  0.          0.          0.
     82   0.          0.          0.          0.          0.          0.          0.
     83   0.          0.          0.          0.14509805  0.73333335  0.99215692
     84   0.99607849  0.99607849  0.99607849  0.87450987  0.80784321  0.80784321
     85   0.29411766  0.26666668  0.84313732  0.99607849  0.99607849  0.45882356
     86   0.          0.          0.          0.          0.          0.          0.
     87   0.          0.          0.          0.          0.          0.44313729
     88   0.8588236   0.99607849  0.94901967  0.89019614  0.45098042  0.34901962
     89   0.12156864  0.          0.          0.          0.          0.7843138
     90   0.99607849  0.9450981   0.16078432  0.          0.          0.          0.
     91   0.          0.          0.          0.          0.          0.          0.
     92   0.          0.66274512  0.99607849  0.6901961   0.24313727  0.          0.
     93   0.          0.          0.          0.          0.          0.18823531
     94   0.90588242  0.99607849  0.91764712  0.          0.          0.          0.
     95   0.          0.          0.          0.          0.          0.          0.
     96   0.          0.          0.07058824  0.48627454  0.          0.          0.
     97   0.          0.          0.          0.          0.          0.
     98   0.32941177  0.99607849  0.99607849  0.65098041  0.          0.          0.
     99   0.          0.          0.          0.          0.          0.          0.
    100   0.          0.          0.          0.          0.          0.          0.
    101   0.          0.          0.          0.          0.          0.          0.
    102   0.54509807  0.99607849  0.9333334   0.22352943  0.          0.          0.
    103   0.          0.          0.          0.          0.          0.          0.
    104   0.          0.          0.          0.          0.          0.          0.
    105   0.          0.          0.          0.          0.          0.
    106   0.82352948  0.98039222  0.99607849  0.65882355  0.          0.          0.
    107   0.          0.          0.          0.          0.          0.          0.
    108   0.          0.          0.          0.          0.          0.          0.
    109   0.          0.          0.          0.          0.          0.          0.
    110   0.94901967  0.99607849  0.93725497  0.22352943  0.          0.          0.
    111   0.          0.          0.          0.          0.          0.          0.
    112   0.          0.          0.          0.          0.          0.          0.
    113   0.          0.          0.          0.          0.          0.
    114   0.34901962  0.98431379  0.9450981   0.33725491  0.          0.          0.
    115   0.          0.          0.          0.          0.          0.          0.
    116   0.          0.          0.          0.          0.          0.          0.
    117   0.          0.          0.          0.          0.          0.
    118   0.01960784  0.80784321  0.96470594  0.6156863   0.          0.          0.
    119   0.          0.          0.          0.          0.          0.          0.
    120   0.          0.          0.          0.          0.          0.          0.
    121   0.          0.          0.          0.          0.          0.          0.
    122   0.01568628  0.45882356  0.27058825  0.          0.          0.          0.
    123   0.          0.          0.          0.          0.          0.          0.
    124   0.          0.          0.          0.          0.          0.          0.
    125   0.          0.          0.          0.          0.          0.          0.
    126   0.          0.          0.          0.          0.          0.          0.
    127   0.          0.          0.          0.          0.          0.          0.        ]
    128 train集合第一个数据标签长度、内容: 10 [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]

    从上面的运行结果可以看出,在变量mnist.train中总共有55000个样本,每个样本有784个特征。
    原图片形状为28*28,28*28=784,每个图片样本展平后则有784维特征。
    选取1个样本,用3种作图方式查看其图片内容,代码如下:

     1 #将数组张换成图片形式
     2 image = mnist.train.images[1].reshape(-1,28)
     3 fig = plt.figure("图片展示")
     4 ax0 =fig.add_subplot(131)
     5 ax0.imshow(image)
     6 ax0.axis('off') #不显示坐标尺寸
     7 
     8 plt.subplot(132)
     9 plt.imshow(image,cmap='gray')
    10 plt.axis('off')#不显示坐标尺寸
    11 
    12 plt.subplot(133)
    13 plt.imshow(image,cmap='gray_r')
    14 plt.axis('off')
    15 plt.show()

    结果:

    从上面的运行结果可以看出,调用plt.show方法时,参数cmap指定值为graygray_r符合正常的观看效果。

    五、查看手写数字图

    从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下

     1 from tensorflow.examples.tutorials.mnist import input_data
     2 import math
     3 import matplotlib.pyplot as plt
     4 import numpy as np
     5 mnist = input_data.read_data_sets('G:MNIST DATABASEMNIST_data',one_hot=True)
     6 #画单张mnist数据集的数据
     7 def drawdigit(position,image,title):
     8     plt.subplot(*position)
     9     plt.imshow(image,cmap='gray_r')
    10     plt.axis('off')
    11     plt.title(title)
    12 
    13 #取一个batch的数据,然后在一张画布上画batch_size个子图
    14 def batchDraw(batch_size):
    15     images,labels = mnist.train.next_batch(batch_size)
    16     row_num = math.ceil(batch_size ** 0.5)
    17     column_num = row_num
    18     plt.figure(figsize=(row_num,column_num))
    19     for i in range(row_num):
    20         for j in range(column_num):
    21             index = i * column_num + j
    22             if index < batch_size:
    23                 position = (row_num,column_num,index+1)
    24                 image = images[index].reshape(-1,28)
    25                 title = 'actual:%d'%(np.argmax(labels[index]))
    26                 drawdigit(position,image,title)
    27 
    28 
    29 if __name__ == '__main__':
    30     batchDraw(196)
    31     plt.show()

    结果:

  • 相关阅读:
    IP fragmentation
    pci驱动
    cpu地址空间
    CentOS7 安装bazel
    kettle集群
    TextRankGloVe算法资料
    使用Kong Service负载均衡Load Balance功能
    自建ss服务器教程
    OpenSSL创建TLS/SSL证书
    监控告警
  • 原文地址:https://www.cnblogs.com/qqw-1995/p/9805025.html
Copyright © 2020-2023  润新知