import matplotlib.pyplot as plt from sklearn.datasets import make_blobs import numpy as np X,labels = make_blobs(100,centers=1) from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=1) kmeans.fit(X) f, ax = plt.subplots(figsize=(7, 5)) ax.set_title("Blob") ax.scatter(X[:, 0], X[:, 1], label='Points') ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1], label='Centroid',color='r') ax.legend() f.show() distances = kmeans.transform(X) # argsort returns an array of indexes which will sort the array in ascending order # so we reverse it via [::-1] and take the top five with [:5] #先把数组展开,逆向排序,选前5个,就是最外面的轮廓的索引 sorted_idx = np.argsort(distances.ravel())[::-1][:5] #Now, let's see which plots are the farthest away: f, ax = plt.subplots(figsize=(7, 5)) ax.set_title("Single Cluster") ax.scatter(X[:, 0], X[:, 1], label='Points') ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1],label='Centroid', color='r') ax.scatter(X[sorted_idx][:, 0], X[sorted_idx][:, 1],label='Extreme Value', edgecolors='g',facecolors='none', s=100) ax.legend(loc='best') f.show() new_X = np.delete(X, sorted_idx, axis=0) #Also, the centroid clearly changes with the removal of these points: new_kmeans = KMeans(n_clusters=1) new_kmeans.fit(new_X) #Let's visualize the difference between the old and new centroids: f, ax = plt.subplots(figsize=(7, 5)) ax.set_title("Extreme Values Removed") ax.scatter(new_X[:, 0], new_X[:, 1], label='Pruned Points') ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1], label='Old Centroid',color='r', s=80, alpha=.5) ax.scatter(new_kmeans.cluster_centers_[:, 0],new_kmeans.cluster_centers_[:, 1], label='New Centroid',color='m', s=80, alpha=.5) ax.legend(loc='best') f.show()