Solve the equation:
p∗e−x + q∗sin(x) + r∗cos(x) + s∗tan(x) + t∗x2 + u = 0
where 0 ≤ x ≤ 1.
Input
Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in a single line: p, q, r, s, t and u (where 0 ≤ p, r ≤ 20 and −20 ≤ q,s,t ≤ 0). There will be maximum 2100 lines in the input file.
Output
For each set of input, there should be a line containing the value of x, correct up to 4 decimal places, or the string ‘No solution’, whichever is applicable.
Sample Input
0 0 0 0 -2 1 1 0 0 0 -1 2 1 -1 1 -1 -1 1
Sample Output
0.7071 No solution 0.7554
观察题目中的条件,方程必定在定义域内单调递减,逻辑方面就很容易了。
在实现上,使用二分找到一个满足条件的解,不过我一开始使用的whlie循环居然会超时,后来换成for循环就过了,后来才发现我的循环有问题
while(abs(f(mid))>=MIN) { if(f(mid)>=MIN) fir=mid,mid=(fir+las)/2; else las=mid,mid=(fir+las)/2; }
判断结束的精确度不应该是用函数值,而应该是用mid,下面for循环通过代码
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<stack> #include<map> using namespace std; const int MAX=1e6; const double MIN=1e-6; #define INF 0x7fffffff #define ll long long #define FOR(i,n) for(i=1;i<=n;i++) #define mst(a) memset(a,0,sizeof(a)) #define mstn(a,n) memset(a,n,sizeof(a)) //struct num{int a,b,i;}a[1005]; //bool cmp(const num &x, const num &y){return x.a>y.a;} int p,q,r,s,t,u; float f(float x) { return p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u; } int main() { while(scanf("%d%d%d%d%d%d",&p,&q,&r,&s,&t,&u)!=EOF) { double fir=0,las=1,mid=(fir+las)/2; if(f(fir)<0||f(las)>0) cout<<"No solution"<<endl; else { for(int i=0;i<=100;i++) { mid=(las+fir)/2; if(f(mid)>MIN) fir=mid; else las=mid; } printf("%.4lf ",mid); }
} return 0; }