• 深度学习框架与运行平台


    一,深度学习框架:

    1)TensorFlow(Google):

      第二代机器学习系统,比第一代的DistBelief快了2倍。被广泛应用于学术研究和工业应用。

      编程语言:Python,C++,CUDA

      许可协议:Apache 2.0 open source license

      特点:已在GitHub上开源。详细官方研究模型、示例和教程。

      百度百科-TensorFlow

      gitee开源地址

    2)Caffe(伯克利

      由表达式,速度和模块化组成。

      软件类型:教学科研相关

      授权协议:BSD

      编程语言:C/C++、Python;

      特点:Caffe 完全开源,并且在有多个活跃社区沟通解答问题,同时提供了一个用于训练、测试等完整工具包,可以帮助使用者快速上手。

    3)PaddlePaddle百度飞桨

      特点:是国内最早开源、也是当前唯一一个功能完备的深度学习平台。

    4)Theano(蒙特利尔大学):

      2017年11月开始不再积极维护。原因在于Theano多年来推出的大部分创新技术现在已被其他框架所采用和完善。

    5)Torch(NYU/Facebook):

      编程语言:Lua

      特点:它提供了广泛的深度学习算法,并已被Facebook、IBM、Yandex和其他公司用于解决数据流的硬件问题。

    6)PyTorch(Facebook):

      编程语言:Lua

      特点:PyTorch采用已经为许多研究人员、开发人员和数据科学家所熟悉的原始Python命令式编程风格。同时它还支持动态计算图,这一特性使得其对时间序列以及自然语言处理数据相关工作的研究人员和工程师很有吸引力

    7)MXNet(李沐):亚马逊的官方框架

      特点:有着非常好的分布式支持,而且性能特别好,占用显存低,同时其开发的语言接口不仅仅有Python和C++,还有R,Matlab,Scala,JavaScript等。

      缺点:社区小。

    二,深度学习运行平台(硬件(GPU)公司推出的):

    1)CUDA(NVIDIA推出的运算平台):

      GPU加速库:CUDNN

      优化支持TensorFlowCaffe,pytorch等。

      消费级显卡:GTX720到GTX3080Ti

    2)ROCm(AMD公司2017年发布推出的运算平台

      GPU加速库:MIOpen

      优化支持TensorFlowCaffe,pytorch等

      支持GCN架构的消费级显卡如:Radeon VII,不支持RDNA架构卡,如5700。

      GCN构架于2019年不在发布产品。最后一款GCN显卡是AMD Radeon VII,前一款为AMD Radeon RX Vega 64。新RDNA2,RDNA3构架或许于近两年年得到ROCm的支持。 

    补充一:N卡是深度学习的主流,兼容性好,资料多;A卡起步晚,兼容差,价钱便宜。服务器级显卡贵,适合生产。消费级显卡便宜,适合研究。

    补充二:部分语言运行速度比较

    LanguageTime Relative Speed
    C gcc-4.0.1 0.05 seconds   1.00 x
    ocaml compiled 3.09.2 0.05 seconds   1.00 x
    SBCL 1.0.2 0.13 seconds   2.55 x
    Java 1.4.2 0.40 seconds   8.00 x
    Io 20070410 Vector 1.40 seconds   28.09 x
    Lua 5.1 1.50 seconds   30.00 x
    ocaml bytecode 3.09.2 3.76 seconds   75.15 x
    Python 2.5.1 9.99 seconds   199.80 x
    Ghostscript 8.51 11.66 seconds   233.12 x
    Perl 5.8.6 Optimized 12.37 seconds   247.34 x
    TCL 8.4 Optimized 16.00 seconds   320.00 x
    Perl 5.8.6 21.75 seconds   435.00 x
    PHP 5.1.4 23.12 seconds   462.40 x
    Javascript SpiderMonkey v1.6 31.06 seconds   621.27 x
    Ruby 1.8.4 34.31 seconds   686.18 x
    Emacs Lisp 47.25 seconds   945.00 x
    Applescript 71.75 seconds   1435.00 x
    Io 20070410 85.26 seconds   1705.13 x
           http://www.forcal.net/sysm/lu1/luhtm/luspeed.htm

     

    365个夜晚,我希望做到两天更一篇博客。加油,小白!
  • 相关阅读:
    rancher 2.X 搭建小型web集群+mysql主从复制
    harbor 仓库搭建
    k8s 集群搭建
    oracle sql命令
    IIS实现反向代理
    高并发的大型网站架构设计
    .net core集成vue
    使用TFS玩转Docker自动化部署
    动态创建IIS站点
    网站架构设计(草稿)
  • 原文地址:https://www.cnblogs.com/qq2806933146xiaobai/p/14419444.html
Copyright © 2020-2023  润新知