• POJ 1436 区间染色


    Horizontally Visible Segments
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 4507   Accepted: 1662

    Description

    There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments? 


    Task 

    Write a program which for each data set: 

    reads the description of a set of vertical segments, 

    computes the number of triangles in this set, 

    writes the result. 

    Input

    The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow. 

    The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments. 

    Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces: 

    yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.

    Output

    The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.

    Sample Input

    1
    5
    0 4 4
    0 3 1
    3 4 2
    0 2 2
    0 2 3

    Sample Output

    1

    Source

     
     
    题目意思:
    给n条垂直x轴的线段,若两个线段之间存在没有其他线段挡着的地方,则称两个线段为可见的。若3条线段两两互为可见,称为一组,求n条线段中有多少组。
     
     
    思路:
    很明显线段树,按x坐标排序,以y建线段树,每加入一条边就和之前的颜色用visited标记起来,然后暴力三重循环即可(虽然一重循环是8000,但是实际上没这么多)。
    注意,插入边的时候,边的两端点*2再插入,还是边界问题。
     
    代码:
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 #include <iostream>
      5 #include <vector>
      6 #include <queue>
      7 #include <cmath>
      8 #include <set>
      9 using namespace std;
     10 
     11 #define N 10005
     12 #define ll root<<1
     13 #define rr root<<1|1
     14 #define mid (a[root].l+a[root].r)/2
     15 
     16 
     17 int max(int x,int y){return x>y?x:y;}
     18 int min(int x,int y){return x<y?x:y;}
     19 int abs(int x,int y){return x<0?-x:x;}
     20 
     21 struct Line{
     22     int y1, y2, x;
     23 }line[N];
     24 
     25 struct node{
     26     int l, r, val;
     27     bool f;
     28 }a[N*8];
     29 
     30 int n;
     31 bool visited[8002][8002];
     32 
     33 bool cmp(Line a,Line b){
     34     return a.x<b.x;
     35 }
     36 
     37 void build(int l,int r,int root){
     38     a[root].l=l;
     39     a[root].r=r;
     40     a[root].val=0;
     41     a[root].f=false;
     42     if(l==r) return;
     43     build(l,mid,ll);
     44     build(mid+1,r,rr);
     45 }
     46 
     47 void down(int root){
     48     if(a[root].f&&a[root].val>0&&a[root].l!=a[root].r){
     49         a[ll].val=a[rr].val=a[root].val;
     50         a[root].val=-1;
     51         a[ll].f=a[rr].f=true;
     52     }
     53 }
     54 void update(int l,int r,int val,int root){
     55     //if(!a[root].f) a[root].f=true;
     56     if(a[root].val==val) return;
     57     if(a[root].l==l&&a[root].r==r){
     58         if(!a[root].f){
     59             a[root].f=true;
     60             a[root].val=val;
     61             return;
     62         }
     63         else{
     64             if(a[root].val>0){
     65                 if(!visited[a[root].val][val]){
     66                     visited[a[root].val][val]=visited[val][a[root].val]=true;
     67                 }
     68                 a[root].val=val;
     69                 return;
     70             }
     71         }
     72     }
     73     down(root);
     74     if(r<=a[ll].r) update(l,r,val,ll);
     75     else if(l>=a[rr].l) update(l,r,val,rr);
     76     else{
     77         update(l,mid,val,ll);
     78         update(mid+1,r,val,rr);
     79     }
     80     if(a[ll].f||a[rr].f) a[root].f=true;
     81     if(a[ll].val==a[rr].val&&a[ll].val>0) a[root].val=a[ll].val;
     82 }
     83 
     84 void out(int root){
     85     if(a[root].l==a[root].r) {
     86         printf("%d ",a[root].val);return;
     87     }
     88     down(root);
     89     out(ll);
     90     out(rr);
     91 }
     92 main()
     93 {
     94     int t, i, j, k;
     95     cin>>t;
     96     while(t--){
     97         scanf("%d",&n);
     98         int minh=999999999, maxh=-1;
     99         for(i=0;i<n;i++){
    100             scanf("%d %d %d",&line[i].y1,&line[i].y2,&line[i].x);
    101             minh=min(min(line[i].y1,line[i].y2),minh);
    102             maxh=max(max(line[i].y1,line[i].y2),maxh);
    103         } 
    104         build(minh*2,maxh*2,1);
    105         sort(line,line+n,cmp);
    106         memset(visited,false,sizeof(visited));
    107         for(i=0;i<n;i++) update(line[i].y1*2,line[i].y2*2,i+1,1);//,out(1),cout<<endl;
    108         int ans=0;
    109         
    110         for(i=1;i<=n;i++){
    111             for(j=i+1;j<=n;j++){
    112                 if(visited[i][j]){
    113                     for(k=j+1;k<=n;k++){
    114                         if(visited[j][k]&&visited[i][k]){
    115                             ans++;
    116                         }
    117                     }
    118                 }
    119             }
    120         }
    121         printf("%d
    ",ans);
    122         
    123     }
    124 }
  • 相关阅读:
    NUTCH Exception in thread "Thread-12751" java.lang.OutOfMemoryError: PermGen space
    未登录词识别
    中文分词索引
    hadoop 存储空间满了
    nutch 生产者队列的大小如何控制 threadcount * 50
    nutch 采集到的数据与实际不符
    nutch 采集效率--设置采集间隔
    异常: http://www.ly.com/news/visa.html: java.io.IOException: unzipBestEffort returned null
    hbase 取多个版本数据
    JavaScript制作时钟特效
  • 原文地址:https://www.cnblogs.com/qq1012662902/p/4538267.html
Copyright © 2020-2023  润新知