• 6069: Detachment(乘法逆元)


    6069: Detachment 分享至QQ空间

    时间限制(普通/Java):2000MS/6000MS     内存限制:65536KByte
    总提交: 33            测试通过:7

    描述

     

    In a highly developed alien society, the habitats are almost infinite dimensional space.

    In the history of this planet,there is an old puzzle.
    You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: a1,a2, … (x= a1+a2+…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space: 
    1.Two different small line segments cannot be equal ( ai≠aj when i≠j).
    2.Make this multidimensional space size s as large as possible (s= a1∗a2*...).Note that it allows to keep one dimension.That's to say, the number of ai can be only one.
    Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)

    输入

     

    The first line is an integer T,meaning the number of test cases.

    Then T lines follow. Each line contains one integer x.
    1≤T≤10^6, 1≤x≤10^9

    输出

     

    Maximum s you can get modulo 10^9+7. Note that we wants to be greatest product before modulo 10^9+7.

    样例输入

    样例输出

     4

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 
     5 int t,n;
     6 const int maxn=4e5+5;
     7 const int MOD=1e9+7;
     8 ll sum[maxn],inv[maxn],arr[maxn];
     9 
    10 inline int read(){
    11     int x=0,f=1;
    12     char ch=getchar();
    13     while(ch<'0'||ch>'9'){
    14         if(ch=='-') f=-1;
    15         ch=getchar();
    16     }
    17     while(ch>='0'&&ch<='9'){
    18         x=(x<<1)+(x<<3)+(ch^48);
    19         ch=getchar();
    20     }
    21     return x*f;
    22 }
    23 
    24 inline void write(ll x){
    25     if(x<0){
    26         putchar('-');
    27         x=-x;
    28     }
    29     if(x>9){
    30         write(x/10);
    31     }
    32     putchar(x%10+'0');
    33 }
    34 
    35 void cul(){
    36     sum[1]=0,inv[1]=1,arr[1]=1;
    37     for(int i=2;i<maxn;i++){
    38         sum[i]=sum[i-1]+i;
    39         arr[i]=arr[i-1]*i%MOD;
    40 //        inv[i]=(MOD-MOD/i*inv[MOD%i]%MOD)%MOD;   //线性求逆元
    41     }
    42 }
    43 
    44 ll Binary(ll ee){
    45     ll left=1,right=maxn-1;
    46     ll mid,ans;
    47     while(left<=right){
    48         mid=left+right>>1;
    49         if(sum[mid]<=ee){
    50             ans=mid;
    51             left=mid+1;
    52         }
    53         else right=mid-1;
    54     }
    55     return ans;   //返回下标
    56 }
    57 
    58 ll judge(ll a,ll m){
    59     ll ans=1;
    60     while(m){
    61         if(m&1) ans=(ans*a)%MOD;
    62         a=a*a%MOD;
    63         m>>=1;
    64     }
    65     return ans%MOD;
    66 }
    67 
    68 int main(){
    69     t=read();
    70     cul();
    71     while(t--){
    72         n=read();
    73         if(n<=4) {printf("%d
    ",n);continue;}
    74         ll ee=Binary(n);
    75         ll shu=n-sum[ee];
    76         ll res=-1;
    77         if(shu==ee){
    78             res=arr[ee]*judge(2,MOD-2)%MOD*(ee+2)%MOD;
    79         }
    80         else{
    81             res=arr[ee+1]*judge(arr[ee-shu+1],MOD-2)%MOD*arr[ee-shu]%MOD;
    82         }
    83         write(res);putchar('
    ');
    84     }
    85     return 0;
    86 }
    View Code
  • 相关阅读:
    MongoDB常用命令
    centos6.9下MongoDB安装
    第三十二节 selenium爬取拉勾网
    第三十节 selenium设置代理
    第三十节 selenium打开多个窗口和切换
    第二十九节 selenium隐式和显式等待
    第二十八节 selenium操作cookie信息
    第二十七节 selenium行为链
    第二十六节 selenium操作表单元素
    SpringMVC工作原理详解
  • 原文地址:https://www.cnblogs.com/qq-1585047819/p/11838797.html
Copyright © 2020-2023  润新知