Function Run Fun
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 21964 | Accepted: 10914 |
Description
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
Source
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #define ll long long; 6 7 using namespace std; 8 9 int A,B,C; 10 int dp[25][25][25]; 11 const int INF=0x3f3f3f3f; 12 13 int dfs(int a,int b,int c){ //记忆化搜索 14 if(a<=0||b<=0||c<=0) return 1; 15 if(a>20||b>20||c>20) return dfs(20,20,20); 16 if(dp[a][b][c]!=INF) return dp[a][b][c]; //记忆化搜索 之前搜到过直接返回 17 if(a<b&&b<c) dp[a][b][c]=dfs(a,b,c-1)+dfs(a,b-1,c-1)-dfs(a,b-1,c); 18 else dp[a][b][c]=dfs(a-1,b,c)+dfs(a-1,b-1,c)+dfs(a-1,b,c-1)-dfs(a-1,b-1,c-1); 19 return dp[a][b][c]; 20 21 } 22 23 int main(){ 24 ios::sync_with_stdio(false); 25 while(cin>>A>>B>>C&&(A!=-1||B!=-1||C!=-1)){ 26 memset(dp,INF,sizeof(dp)); 27 printf("w(%d, %d, %d) = %d ",A,B,C,dfs(A,B,C)); 28 } 29 return 0; 30 }