【Java并发编程实战】-----“J.U.C”:ReentrantLock之一简介
ReentrantLock介绍
ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。
顾名思义,ReentrantLock锁在同一个时间点只能被一个线程锁持有;而可重入的意思是,ReentrantLock锁,可以被单个线程多次获取。
ReentrantLock分为“公平锁”和“非公平锁”。它们的区别体现在获取锁的机制上是否公平。“锁”是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在同一个时间点只能被一个线程获取(当某线程获取到“锁”时,其它线程就必须等待);ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次排队获取锁;而“非公平锁”在锁是可获取状态时,不管自己是不是在队列的开头都会获取锁。
注:由于要介绍ReentrantLock的东西太多了,免得各位客官看累,所以分三篇博客来阐述。本篇博客介绍ReentrantLock基本内容,后两篇博客从源码级别分别阐述ReentrantLock的lock、unlock实现机制。
ReentrantLock,可重入的互斥锁,是一种递归无阻塞的同步机制。它可以等同于synchronized的使用,但是ReentrantLock提供了比synchronized更强大、灵活的锁机制,可以减少死锁发生的概率。
对于ReentrantLock,官方有详细的说明:一个可重入的互斥锁定 Lock,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁定相同的一些基本行为和语义,但功能更强大。ReentrantLock 将由最近成功获得锁定,并且还没有释放该锁定的线程所拥有。当锁定没有被另一个线程所拥有时,调用 lock 的线程将成功获取该锁定并返回。如果当前线程已经拥有该锁定,此方法将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。
ReentrantLock提供公平锁机制,构造方法接收一个可选的公平参数。当设置为true时,它是公平锁,这些所将访问权授予等待时间最长的线程。否则该锁将无法保证线程获取锁的访问顺序。但是公平锁与非公平锁相比,公平锁的程序在许多线程访问时表现为很低的总体吞吐量。
ReentrantLock示例
通过对比“示例1”和“示例2”,我们能够清晰的认识lock和unlock的作用
示例1
1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 4 // LockTest1.java 5 // 仓库 6 class Depot { 7 private int size; // 仓库的实际数量 8 private Lock lock; // 独占锁 9 10 public Depot() { 11 this.size = 0; 12 this.lock = new ReentrantLock(); 13 } 14 15 public void produce(int val) { 16 lock.lock(); 17 try { 18 size += val; 19 System.out.printf("%s produce(%d) --> size=%d ", 20 Thread.currentThread().getName(), val, size); 21 } finally { 22 lock.unlock(); 23 } 24 } 25 26 public void consume(int val) { 27 lock.lock(); 28 try { 29 size -= val; 30 System.out.printf("%s consume(%d) <-- size=%d ", 31 Thread.currentThread().getName(), val, size); 32 } finally { 33 lock.unlock(); 34 } 35 } 36 }; 37 38 // 生产者 39 class Producer { 40 private Depot depot; 41 42 public Producer(Depot depot) { 43 this.depot = depot; 44 } 45 46 // 消费产品:新建一个线程向仓库中生产产品。 47 public void produce(final int val) { 48 new Thread() { 49 public void run() { 50 depot.produce(val); 51 } 52 }.start(); 53 } 54 } 55 56 // 消费者 57 class Customer { 58 private Depot depot; 59 60 public Customer(Depot depot) { 61 this.depot = depot; 62 } 63 64 // 消费产品:新建一个线程从仓库中消费产品。 65 public void consume(final int val) { 66 new Thread() { 67 public void run() { 68 depot.consume(val); 69 } 70 }.start(); 71 } 72 } 73 74 public class LockTest1 { 75 public static void main(String[] args) { 76 Depot mDepot = new Depot(); 77 Producer mPro = new Producer(mDepot); 78 Customer mCus = new Customer(mDepot); 79 80 mPro.produce(60); 81 mPro.produce(120); 82 mCus.consume(90); 83 mCus.consume(150); 84 mPro.produce(110); 85 } 86 }
运行结果:
Thread-0 produce(60) --> size=60 Thread-1 produce(120) --> size=180 Thread-3 consume(150) <-- size=30 Thread-2 consume(90) <-- size=-60 Thread-4 produce(110) --> size=50
结果分析:
(01) Depot 是个仓库。通过produce()能往仓库中生产货物,通过consume()能消费仓库中的货物。通过独占锁lock实现对仓库的互斥访问:在操作(生产/消费)仓库中货品前,会先通过lock()锁住仓库,操作完之后再通过unlock()解锁。
(02) Producer是生产者类。调用Producer中的produce()函数可以新建一个线程往仓库中生产产品。
(03) Customer是消费者类。调用Customer中的consume()函数可以新建一个线程消费仓库中的产品。
(04) 在主线程main中,我们会新建1个生产者mPro,同时新建1个消费者mCus。它们分别向仓库中生产/消费产品。
根据main中的生产/消费数量,仓库最终剩余的产品应该是50。运行结果是符合我们预期的!
这个模型存在两个问题:
(01) 现实中,仓库的容量不可能为负数。但是,此模型中的仓库容量可以为负数,这与现实相矛盾!
(02) 现实中,仓库的容量是有限制的。但是,此模型中的容量确实没有限制的!
这两个问题,我们稍微会讲到如何解决。现在,先看个简单的示例2;通过对比“示例1”和“示例2”,我们能更清晰的认识lock(),unlock()的用途。
示例2
1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 4 // LockTest2.java 5 // 仓库 6 class Depot { 7 private int size; // 仓库的实际数量 8 private Lock lock; // 独占锁 9 10 public Depot() { 11 this.size = 0; 12 this.lock = new ReentrantLock(); 13 } 14 15 public void produce(int val) { 16 // lock.lock(); 17 // try { 18 size += val; 19 System.out.printf("%s produce(%d) --> size=%d ", 20 Thread.currentThread().getName(), val, size); 21 // } catch (InterruptedException e) { 22 // } finally { 23 // lock.unlock(); 24 // } 25 } 26 27 public void consume(int val) { 28 // lock.lock(); 29 // try { 30 size -= val; 31 System.out.printf("%s consume(%d) <-- size=%d ", 32 Thread.currentThread().getName(), val, size); 33 // } finally { 34 // lock.unlock(); 35 // } 36 } 37 }; 38 39 // 生产者 40 class Producer { 41 private Depot depot; 42 43 public Producer(Depot depot) { 44 this.depot = depot; 45 } 46 47 // 消费产品:新建一个线程向仓库中生产产品。 48 public void produce(final int val) { 49 new Thread() { 50 public void run() { 51 depot.produce(val); 52 } 53 }.start(); 54 } 55 } 56 57 // 消费者 58 class Customer { 59 private Depot depot; 60 61 public Customer(Depot depot) { 62 this.depot = depot; 63 } 64 65 // 消费产品:新建一个线程从仓库中消费产品。 66 public void consume(final int val) { 67 new Thread() { 68 public void run() { 69 depot.consume(val); 70 } 71 }.start(); 72 } 73 } 74 75 public class LockTest2 { 76 public static void main(String[] args) { 77 Depot mDepot = new Depot(); 78 Producer mPro = new Producer(mDepot); 79 Customer mCus = new Customer(mDepot); 80 81 mPro.produce(60); 82 mPro.produce(120); 83 mCus.consume(90); 84 mCus.consume(150); 85 mPro.produce(110); 86 } 87 }
(某一次)运行结果:
Thread-0 produce(60) --> size=-60 Thread-4 produce(110) --> size=50 Thread-2 consume(90) <-- size=-60 Thread-1 produce(120) --> size=-60 Thread-3 consume(150) <-- size=-60
结果说明:
“示例2”在“示例1”的基础上去掉了lock锁。在“示例2”中,仓库中最终剩余的产品是-60,而不是我们期望的50。原因是我们没有实现对仓库的互斥访问。
示例3
在“示例3”中,我们通过Condition去解决“示例1”中的两个问题:“仓库的容量不可能为负数”以及“仓库的容量是有限制的”。
解决该问题是通过Condition。Condition是需要和Lock联合使用的:通过Condition中的await()方法,能让线程阻塞[类似于wait()];通过Condition的signal()方法,能让唤醒线程[类似于notify()]。
1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 import java.util.concurrent.locks.Condition; 4 5 // LockTest3.java 6 // 仓库 7 class Depot { 8 private int capacity; // 仓库的容量 9 private int size; // 仓库的实际数量 10 private Lock lock; // 独占锁 11 private Condition fullCondtion; // 生产条件 12 private Condition emptyCondtion; // 消费条件 13 14 public Depot(int capacity) { 15 this.capacity = capacity; 16 this.size = 0; 17 this.lock = new ReentrantLock(); 18 this.fullCondtion = lock.newCondition(); 19 this.emptyCondtion = lock.newCondition(); 20 } 21 22 public void produce(int val) { 23 lock.lock(); 24 try { 25 // left 表示“想要生产的数量”(有可能生产量太多,需多此生产) 26 int left = val; 27 while (left > 0) { 28 // 库存已满时,等待“消费者”消费产品。 29 while (size >= capacity) 30 fullCondtion.await(); 31 // 获取“实际生产的数量”(即库存中新增的数量) 32 // 如果“库存”+“想要生产的数量”>“总的容量”,则“实际增量”=“总的容量”-“当前容量”。(此时填满仓库) 33 // 否则“实际增量”=“想要生产的数量” 34 int inc = (size+left)>capacity ? (capacity-size) : left; 35 size += inc; 36 left -= inc; 37 System.out.printf("%s produce(%3d) --> left=%3d, inc=%3d, size=%3d ", 38 Thread.currentThread().getName(), val, left, inc, size); 39 // 通知“消费者”可以消费了。 40 emptyCondtion.signal(); 41 } 42 } catch (InterruptedException e) { 43 } finally { 44 lock.unlock(); 45 } 46 } 47 48 public void consume(int val) { 49 lock.lock(); 50 try { 51 // left 表示“客户要消费数量”(有可能消费量太大,库存不够,需多此消费) 52 int left = val; 53 while (left > 0) { 54 // 库存为0时,等待“生产者”生产产品。 55 while (size <= 0) 56 emptyCondtion.await(); 57 // 获取“实际消费的数量”(即库存中实际减少的数量) 58 // 如果“库存”<“客户要消费的数量”,则“实际消费量”=“库存”; 59 // 否则,“实际消费量”=“客户要消费的数量”。 60 int dec = (size<left) ? size : left; 61 size -= dec; 62 left -= dec; 63 System.out.printf("%s consume(%3d) <-- left=%3d, dec=%3d, size=%3d ", 64 Thread.currentThread().getName(), val, left, dec, size); 65 fullCondtion.signal(); 66 } 67 } catch (InterruptedException e) { 68 } finally { 69 lock.unlock(); 70 } 71 } 72 73 public String toString() { 74 return "capacity:"+capacity+", actual size:"+size; 75 } 76 }; 77 78 // 生产者 79 class Producer { 80 private Depot depot; 81 82 public Producer(Depot depot) { 83 this.depot = depot; 84 } 85 86 // 消费产品:新建一个线程向仓库中生产产品。 87 public void produce(final int val) { 88 new Thread() { 89 public void run() { 90 depot.produce(val); 91 } 92 }.start(); 93 } 94 } 95 96 // 消费者 97 class Customer { 98 private Depot depot; 99 100 public Customer(Depot depot) { 101 this.depot = depot; 102 } 103 104 // 消费产品:新建一个线程从仓库中消费产品。 105 public void consume(final int val) { 106 new Thread() { 107 public void run() { 108 depot.consume(val); 109 } 110 }.start(); 111 } 112 } 113 114 public class LockTest3 { 115 public static void main(String[] args) { 116 Depot mDepot = new Depot(100); 117 Producer mPro = new Producer(mDepot); 118 Customer mCus = new Customer(mDepot); 119 120 mPro.produce(60); 121 mPro.produce(120); 122 mCus.consume(90); 123 mCus.consume(150); 124 mPro.produce(110); 125 } 126 }
(某一次)运行结果:
Thread-0 produce( 60) --> left= 0, inc= 60, size= 60 Thread-1 produce(120) --> left= 80, inc= 40, size=100 Thread-2 consume( 90) <-- left= 0, dec= 90, size= 10 Thread-3 consume(150) <-- left=140, dec= 10, size= 0 Thread-4 produce(110) --> left= 10, inc=100, size=100 Thread-3 consume(150) <-- left= 40, dec=100, size= 0 Thread-4 produce(110) --> left= 0, inc= 10, size= 10 Thread-3 consume(150) <-- left= 30, dec= 10, size= 0 Thread-1 produce(120) --> left= 0, inc= 80, size= 80 Thread-3 consume(150) <-- left= 0, dec= 30, size= 50
ReentrantLock与synchronized的区别
前面提到ReentrantLock提供了比synchronized更加灵活和强大的锁机制,那么它的灵活和强大之处在哪里呢?他们之间又有什么相异之处呢?
首先他们肯定具有相同的功能和内存语义。
1、与synchronized相比,ReentrantLock提供了更多,更加全面的功能,具备更强的扩展性。例如:时间锁等候,可中断锁等候,锁投票。
2、ReentrantLock还提供了条件Condition,对线程的等待、唤醒操作更加详细和灵活,所以在多个条件变量和高度竞争锁的地方,ReentrantLock更加适合(以后会阐述Condition)。
3、ReentrantLock提供了可轮询的锁请求。它会尝试着去获取锁,如果成功则继续,否则可以等到下次运行时处理,而synchronized则一旦进入锁请求要么成功要么阻塞,所以相比synchronized而言,ReentrantLock会不容易产生死锁些。
4、ReentrantLock支持更加灵活的同步代码块,但是使用synchronized时,只能在同一个synchronized块结构中获取和释放。注:ReentrantLock的锁释放一定要在finally中处理,否则可能会产生严重的后果。
5、ReentrantLock支持中断处理,且性能较synchronized会好些。
ReentrantLock数据结构
ReentrantLock的UML类图
从上图我们可以看到,ReentrantLock实现Lock接口,Sync与ReentrantLock是组合关系,且FairSync(公平锁)、NonfairySync(非公平锁)是Sync的子类。Sync继承AQS(AbstractQueuedSynchronizer)。在具体分析lock时,我们需要了解几个概念:
1. AQS -- 指AbstractQueuedSynchronizer类。
AQS是java中管理“锁”的抽象类,锁的许多公共方法都是在这个类中实现。AQS是独占锁(例如,ReentrantLock)和共享锁(例如,Semaphore)的公共父类。
2. AQS锁的类别 -- 分为“独占锁”和“共享锁”两种。
(01) 独占锁 -- 锁在一个时间点只能被一个线程锁占有。根据锁的获取机制,它又划分为“公平锁”和“非公平锁”。公平锁,是按照通过CLH等待线程按照先来先得的规则,公平的获取锁;而非公平锁,则当线程要获取锁时,它会无视CLH等待队列而直接获取锁。独占锁的典型实例子是ReentrantLock,此外,ReentrantReadWriteLock.WriteLock也是独占锁。
(02) 共享锁 -- 能被多个线程同时拥有,能被共享的锁。JUC包中的ReentrantReadWriteLock.ReadLock,CyclicBarrier, CountDownLatch和Semaphore都是共享锁。这些锁的用途和原理,在以后的章节再详细介绍。
3. CLH队列 -- Craig, Landin, and Hagersten lock queue
CLH队列是AQS中“等待锁”的线程队列。在多线程中,为了保护竞争资源不被多个线程同时操作而起来错误,我们常常需要通过锁来保护这些资源。在独占锁中,竞争资源在一个时间点只能被一个线程锁访问;而其它线程则需要等待。CLH就是管理这些“等待锁”的线程的队列。
CLH是一个非阻塞的 FIFO 队列。也就是说往里面插入或移除一个节点的时候,在并发条件下不会阻塞,而是通过自旋锁和 CAS 保证节点插入和移除的原子性。
4. CAS函数 -- Compare And Swap
CAS函数,是比较并交换函数,它是原子操作函数;即,通过CAS操作的数据都是以原子方式进行的。例如,compareAndSetHead(), compareAndSetTail(), compareAndSetNext()等函数。它们共同的特点是,这些函数所执行的动作是以原子的方式进行的。
获取公平锁(基于JDK1.7.0_40)
通过前面“Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock”的“示例1”,我们知道,获取锁是通过lock()函数。下面,我们以lock()对获取公平锁的过程进行展开。
1. lock()
lock()在ReentrantLock.java的FairSync类中实现,它的源码如下:
final void lock() { acquire(1); }
说明:“当前线程”实际上是通过acquire(1)获取锁的。
这里说明一下“1”的含义,它是设置“锁的状态”的参数。对于“独占锁”而言,锁处于可获取状态时,它的状态值是0;锁被线程初次获取到了,它的状态值就变成了1。
由于ReentrantLock(公平锁/非公平锁)是可重入锁,所以“独占锁”可以被单个线程多此获取,每获取1次就将锁的状态+1。也就是说,初次获取锁时,通过acquire(1)将锁的状态值设为1;再次获取锁时,将锁的状态值设为2;依次类推...这就是为什么获取锁时,传入的参数是1的原因了。
可重入就是指锁可以被单个线程多次获取。
2. acquire()
acquire()在AQS中实现的,它的源码如下:
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
(01) “当前线程”首先通过tryAcquire()尝试获取锁。获取成功的话,直接返回;尝试失败的话,进入到等待队列排序等待(前面还有可能有需要线程在等待该锁)。
(02) “当前线程”尝试失败的情况下,先通过addWaiter(Node.EXCLUSIVE)来将“当前线程”加入到"CLH队列(非阻塞的FIFO队列)"末尾。CLH队列就是线程等待队列。
(03) 再执行完addWaiter(Node.EXCLUSIVE)之后,会调用acquireQueued()来获取锁。由于此时ReentrantLock是公平锁,它会根据公平性原则来获取锁。
(04) “当前线程”在执行acquireQueued()时,会进入到CLH队列中休眠等待,直到获取锁了才返回!如果“当前线程”在休眠等待过程中被中断过,acquireQueued会返回true,此时"当前线程"会调用selfInterrupt()来自己给自己产生一个中断。至于为什么要自己给自己产生一个中断,后面再介绍。
上面是对acquire()的概括性说明。下面,我们将该函数分为4部分来逐步解析。
一. tryAcquire()
二. addWaiter()
三. acquireQueued()
四. selfInterrupt()
一. tryAcquire()
1. tryAcquire()
公平锁的tryAcquire()在ReentrantLock.java的FairSync类中实现,源码如下:
protected final boolean tryAcquire(int acquires) { // 获取“当前线程” final Thread current = Thread.currentThread(); // 获取“独占锁”的状态 int c = getState(); // c=0意味着“锁没有被任何线程锁拥有”, if (c == 0) { // 若“锁没有被任何线程锁拥有”, // 则判断“当前线程”是不是CLH队列中的第一个线程线程, // 若是的话,则获取该锁,设置锁的状态,并切设置锁的拥有者为“当前线程”。 if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { // 如果“独占锁”的拥有者已经为“当前线程”, // 则将更新锁的状态。 int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
说明:根据代码,我们可以分析出,tryAcquire()的作用就是尝试去获取锁。注意,这里只是尝试!
尝试成功的话,返回true;尝试失败的话,返回false,后续再通过其它办法来获取该锁。后面我们会说明,在尝试失败的情况下,是如何一步步获取锁的。
2. hasQueuedPredecessors()
hasQueuedPredecessors()在AQS中实现,源码如下:
public final boolean hasQueuedPredecessors() { Node t = tail; Node h = head; Node s; return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); }
说明: 通过代码,能分析出,hasQueuedPredecessors() 是通过判断"当前线程"是不是在CLH队列的队首,来返回AQS中是不是有比“当前线程”等待更久的线程。下面对head、tail和Node进行说明。
3. Node的源码
Node就是CLH队列的节点。Node在AQS中实现,它的数据结构如下:
private transient volatile Node head; // CLH队列的队首 private transient volatile Node tail; // CLH队列的队尾 // CLH队列的节点 static final class Node { static final Node SHARED = new Node(); static final Node EXCLUSIVE = null; // 线程已被取消,对应的waitStatus的值 static final int CANCELLED = 1; // “当前线程的后继线程需要被unpark(唤醒)”,对应的waitStatus的值。 // 一般发生情况是:当前线程的后继线程处于阻塞状态,而当前线程被release或cancel掉,因此需要唤醒当前线程的后继线程。 static final int SIGNAL = -1; // 线程(处在Condition休眠状态)在等待Condition唤醒,对应的waitStatus的值 static final int CONDITION = -2; // (共享锁)其它线程获取到“共享锁”,对应的waitStatus的值 static final int PROPAGATE = -3; // waitStatus为“CANCELLED, SIGNAL, CONDITION, PROPAGATE”时分别表示不同状态, // 若waitStatus=0,则意味着当前线程不属于上面的任何一种状态。 volatile int waitStatus; // 前一节点 volatile Node prev; // 后一节点 volatile Node next; // 节点所对应的线程 volatile Thread thread; // nextWaiter是“区别当前CLH队列是 ‘独占锁’队列 还是 ‘共享锁’队列 的标记” // 若nextWaiter=SHARED,则CLH队列是“独占锁”队列; // 若nextWaiter=EXCLUSIVE,(即nextWaiter=null),则CLH队列是“共享锁”队列。 Node nextWaiter; // “共享锁”则返回true,“独占锁”则返回false。 final boolean isShared() { return nextWaiter == SHARED; } // 返回前一节点 final Node predecessor() throws NullPointerException { Node p = prev; if (p == null) throw new NullPointerException(); else return p; } Node() { // Used to establish initial head or SHARED marker } // 构造函数。thread是节点所对应的线程,mode是用来表示thread的锁是“独占锁”还是“共享锁”。 Node(Thread thread, Node mode) { // Used by addWaiter this.nextWaiter = mode; this.thread = thread; } // 构造函数。thread是节点所对应的线程,waitStatus是线程的等待状态。 Node(Thread thread, int waitStatus) { // Used by Condition this.waitStatus = waitStatus; this.thread = thread; } }
说明:
Node是CLH队列的节点,代表“等待锁的线程队列”。
(01) 每个Node都会一个线程对应。
(02) 每个Node会通过prev和next分别指向上一个节点和下一个节点,这分别代表上一个等待线程和下一个等待线程。
(03) Node通过waitStatus保存线程的等待状态。
(04) Node通过nextWaiter来区分线程是“独占锁”线程还是“共享锁”线程。如果是“独占锁”线程,则nextWaiter的值为EXCLUSIVE;如果是“共享锁”线程,则nextWaiter的值是SHARED。
4. compareAndSetState()
compareAndSetState()在AQS中实现。它的源码如下:
protected final boolean compareAndSetState(int expect, int update) { return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
说明: compareAndSwapInt() 是sun.misc.Unsafe类中的一个本地方法。对此,我们需要了解的是 compareAndSetState(expect, update) 是以原子的方式操作当前线程;若当前线程的状态为expect,则设置它的状态为update。
5. setExclusiveOwnerThread()
setExclusiveOwnerThread()在AbstractOwnableSynchronizer.java中实现,它的源码如下:
// exclusiveOwnerThread是当前拥有“独占锁”的线程 private transient Thread exclusiveOwnerThread; protected final void setExclusiveOwnerThread(Thread t) { exclusiveOwnerThread = t; }
说明:setExclusiveOwnerThread()的作用就是,设置线程t为当前拥有“独占锁”的线程。
6. getState(), setState()
getState()和setState()都在AQS中实现,源码如下:
// 锁的状态 private volatile int state; // 设置锁的状态 protected final void setState(int newState) { state = newState; } // 获取锁的状态 protected final int getState() { return state; }
说明:state表示锁的状态,对于“独占锁”而已,state=0表示锁是可获取状态(即,锁没有被任何线程锁持有)。由于java中的独占锁是可重入的,state的值可以>1。
小结:tryAcquire()的作用就是让“当前线程”尝试获取锁。获取成功返回true,失败则返回false。
二. addWaiter(Node.EXCLUSIVE)
addWaiter(Node.EXCLUSIVE)的作用是,创建“当前线程”的Node节点,且Node中记录“当前线程”对应的锁是“独占锁”类型,并且将该节点添加到CLH队列的末尾。
1.addWaiter()
addWaiter()在AQS中实现,源码如下:
private Node addWaiter(Node mode) { // 新建一个Node节点,节点对应的线程是“当前线程”,“当前线程”的锁的模型是mode。 Node node = new Node(Thread.currentThread(), mode); Node pred = tail; // 若CLH队列不为空,则将“当前线程”添加到CLH队列末尾 if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } // 若CLH队列为空,则调用enq()新建CLH队列,然后再将“当前线程”添加到CLH队列中。 enq(node); return node; }
说明:对于“公平锁”而言,addWaiter(Node.EXCLUSIVE)会首先创建一个Node节点,节点的类型是“独占锁”(Node.EXCLUSIVE)类型。然后,再将该节点添加到CLH队列的末尾。
2. compareAndSetTail()
compareAndSetTail()在AQS中实现,源码如下:
private final boolean compareAndSetTail(Node expect, Node update) { return unsafe.compareAndSwapObject(this, tailOffset, expect, update); }
说明:compareAndSetTail也属于CAS函数,也是通过“本地方法”实现的。compareAndSetTail(expect, update)会以原子的方式进行操作,它的作用是判断CLH队列的队尾是不是为expect,是的话,就将队尾设为update。
3. enq()
enq()在AQS中实现,源码如下:
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
说明: enq()的作用很简单。如果CLH队列为空,则新建一个CLH表头;然后将node添加到CLH末尾。否则,直接将node添加到CLH末尾。
小结:addWaiter()的作用,就是将当前线程添加到CLH队列中。这就意味着将当前线程添加到等待获取“锁”的等待线程队列中了。
三. acquireQueued()
前面,我们已经将当前线程添加到CLH队列中了。而acquireQueued()的作用就是逐步的去执行CLH队列的线程,如果当前线程获取到了锁,则返回;否则,当前线程进行休眠,直到唤醒并重新获取锁了才返回。下面,我们看看acquireQueued()的具体流程。
1. acquireQueued()
acquireQueued()在AQS中实现,源码如下:
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { // interrupted表示在CLH队列的调度中, // “当前线程”在休眠时,有没有被中断过。 boolean interrupted = false; for (;;) { // 获取上一个节点。 // node是“当前线程”对应的节点,这里就意味着“获取上一个等待锁的线程”。 final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
说明:acquireQueued()的目的是从队列中获取锁。
在这个for循环中,LZ不是很明白为什么要加p==head,Java多线程系列--“JUC锁”03之 公平锁(一)这篇博客有一个较好的解释如下:
p == head && tryAcquire(arg)
首先,判断“前继节点”是不是CHL表头。如果是的话,则通过tryAcquire()尝试获取锁。
其实,这样做的目的是为了“让当前线程获取锁”,但是为什么需要先判断p==head呢?理解这个对理解“公平锁”的机制很重要,因为这么做的原因就是为了保证公平性!
(a) 前面,我们在shouldParkAfterFailedAcquire()我们判断“当前线程”是否需要阻塞;
(b) 接着,“当前线程”阻塞的话,会调用parkAndCheckInterrupt()来阻塞线程。当线程被解除阻塞的时候,我们会返回线程的中断状态。而线程被解决阻塞,可能是由于“线程被中断”,也可能是由于“其它线程调用了该线程的unpark()函数”。
(c) 再回到p==head这里。如果当前线程是因为其它线程调用了unpark()函数而被唤醒,那么唤醒它的线程,应该是它的前继节点所对应的线程(关于这一点,后面在“释放锁”的过程中会看到)。 OK,是前继节点调用unpark()唤醒了当前线程!
此时,再来理解p==head就很简单了:当前继节点是CLH队列的头节点,并且它释放锁之后;就轮到当前节点获取锁了。然后,当前节点通过tryAcquire()获取锁;获取成功的话,通过setHead(node)设置当前节点为头节点,并返回。
总之,如果“前继节点调用unpark()唤醒了当前线程”并且“前继节点是CLH表头”,此时就是满足p==head,也就是符合公平性原则的。否则,如果当前线程是因为“线程被中断”而唤醒,那么显然就不是公平了。这就是为什么说p==head就是保证公平性!
2. shouldParkAfterFailedAcquire()
shouldParkAfterFailedAcquire()在AQS中实现,源码如下:
// 返回“当前线程是否应该阻塞” private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { // 前继节点的状态 int ws = pred.waitStatus; // 如果前继节点是SIGNAL状态,则意味这当前线程需要被unpark唤醒。此时,返回true。 if (ws == Node.SIGNAL) return true; // 如果前继节点是“取消”状态,则设置 “当前节点”的 “当前前继节点” 为 “‘原前继节点’的前继节点”。 if (ws > 0) { do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { // 如果前继节点为“0”或者“共享锁”状态,则设置前继节点为SIGNAL状态。 compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
说明:
(01) 关于waitStatus请参考下表(中扩号内为waitStatus的值),更多关于waitStatus的内容,可以参考前面的Node类的介绍。
CANCELLED[1] -- 当前线程已被取消
SIGNAL[-1] -- “当前线程的后继线程需要被unpark(唤醒)”。一般发生情况是:当前线程的后继线程处于阻塞状态,而当前线程被release或cancel掉,因此需要唤醒当前线程的后继线程。
CONDITION[-2] -- 当前线程(处在Condition休眠状态)在等待Condition唤醒
PROPAGATE[-3] -- (共享锁)其它线程获取到“共享锁”
[0] -- 当前线程不属于上面的任何一种状态。
(02) shouldParkAfterFailedAcquire()通过以下规则,判断“当前线程”是否需要被阻塞。
规则1:如果前继节点状态为SIGNAL,表明当前节点需要被unpark(唤醒),此时则返回true。
规则2:如果前继节点状态为CANCELLED(ws>0),说明前继节点已经被取消,则通过先前回溯找到一个有效(非CANCELLED状态)的节点,并返回false。
规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,并返回false。
如果“规则1”发生,即“前继节点是SIGNAL”状态,则意味着“当前线程”需要被阻塞。接下来会调用parkAndCheckInterrupt()阻塞当前线程,直到当前先被唤醒才从parkAndCheckInterrupt()中返回。
3. parkAndCheckInterrupt())
parkAndCheckInterrupt()在AQS中实现,源码如下:
private final boolean parkAndCheckInterrupt() { // 通过LockSupport的park()阻塞“当前线程”。 LockSupport.park(this); // 返回线程的中断状态。 return Thread.interrupted(); }
说明:parkAndCheckInterrupt()的作用是阻塞当前线程,并且返回“线程被唤醒之后”的中断状态。
它会先通过LockSupport.park()阻塞“当前线程”,然后通过Thread.interrupted()返回线程的中断状态。
这里介绍一下线程被阻塞之后如何唤醒。一般有2种情况:
第1种情况:unpark()唤醒。“前继节点对应的线程”使用完锁之后,通过unpark()方式唤醒当前线程。
第2种情况:中断唤醒。其它线程通过interrupt()中断当前线程。
补充:LockSupport()中的park(),unpark()的作用 和 Object中的wait(),notify()作用类似,是阻塞/唤醒。
它们的用法不同,park(),unpark()是轻量级的,而wait(),notify()是必须先通过Synchronized获取同步锁。
关于LockSupport,我们会在之后的章节再专门进行介绍!
4. 再次tryAcquire()
了解了shouldParkAfterFailedAcquire()和parkAndCheckInterrupt()函数之后。我们接着分析acquireQueued()的for循环部分。
final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; }
说明:
(01) 通过node.predecessor()获取前继节点。predecessor()就是返回node的前继节点,若对此有疑惑可以查看下面关于Node类的介绍。
(02) p == head && tryAcquire(arg)
首先,判断“前继节点”是不是CHL表头。如果是的话,则通过tryAcquire()尝试获取锁。
其实,这样做的目的是为了“让当前线程获取锁”,但是为什么需要先判断p==head呢?理解这个对理解“公平锁”的机制很重要,因为这么做的原因就是为了保证公平性!
(a) 前面,我们在shouldParkAfterFailedAcquire()我们判断“当前线程”是否需要阻塞;
(b) 接着,“当前线程”阻塞的话,会调用parkAndCheckInterrupt()来阻塞线程。当线程被解除阻塞的时候,我们会返回线程的中断状态。而线程被解决阻塞,可能是由于“线程被中断”,也可能是由于“其它线程调用了该线程的unpark()函数”。
(c) 再回到p==head这里。如果当前线程是因为其它线程调用了unpark()函数而被唤醒,那么唤醒它的线程,应该是它的前继节点所对应的线程(关于这一点,后面在“释放锁”的过程中会看到)。 OK,是前继节点调用unpark()唤醒了当前线程!
此时,再来理解p==head就很简单了:当前继节点是CLH队列的头节点,并且它释放锁之后;就轮到当前节点获取锁了。然后,当前节点通过tryAcquire()获取锁;获取成功的话,通过setHead(node)设置当前节点为头节点,并返回。
总之,如果“前继节点调用unpark()唤醒了当前线程”并且“前继节点是CLH表头”,此时就是满足p==head,也就是符合公平性原则的。否则,如果当前线程是因为“线程被中断”而唤醒,那么显然就不是公平了。这就是为什么说p==head就是保证公平性!
小结:acquireQueued()的作用就是“当前线程”会根据公平性原则进行阻塞等待,直到获取锁为止;并且返回当前线程在等待过程中有没有并中断过。
四. selfInterrupt()
selfInterrupt()是AQS中实现,源码如下:
private static void selfInterrupt() { Thread.currentThread().interrupt(); }
说明:selfInterrupt()的代码很简单,就是“当前线程”自己产生一个中断。但是,为什么需要这么做呢?
这必须结合acquireQueued()进行分析。如果在acquireQueued()中,当前线程被中断过,则执行selfInterrupt();否则不会执行。
在acquireQueued()中,即使是线程在阻塞状态被中断唤醒而获取到cpu执行权利;但是,如果该线程的前面还有其它等待锁的线程,根据公平性原则,该线程依然无法获取到锁。它会再次阻塞! 该线程再次阻塞,直到该线程被它的前面等待锁的线程锁唤醒;线程才会获取锁,然后“真正执行起来”!
也就是说,在该线程“成功获取锁并真正执行起来”之前,它的中断会被忽略并且中断标记会被清除! 因为在parkAndCheckInterrupt()中,我们线程的中断状态时调用了Thread.interrupted()。该函数不同于Thread的isInterrupted()函数,isInterrupted()仅仅返回中断状态,而interrupted()在返回当前中断状态之后,还会清除中断状态。 正因为之前的中断状态被清除了,所以这里需要调用selfInterrupt()重新产生一个中断!
小结:selfInterrupt()的作用就是当前线程自己产生一个中断。
总结
再回过头看看acquire()函数,它最终的目的是获取锁!
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
(01) 先是通过tryAcquire()尝试获取锁。获取成功的话,直接返回;尝试失败的话,再通过acquireQueued()获取锁。
(02) 尝试失败的情况下,会先通过addWaiter()来将“当前线程”加入到"CLH队列"末尾;然后调用acquireQueued(),在CLH队列中排序等待获取锁,在此过程中,线程处于休眠状态。直到获取锁了才返回。 如果在休眠等待过程中被中断过,则调用selfInterrupt()来自己产生一个中断。
首先通过tryAcquire方法尝试获取锁,如果成功直接返回,否则通过acquireQueued()再次获取。在acquireQueued()中会先通过addWaiter将当前线程加入到CLH队列的队尾,在CLH队列中等待。在等待过程中线程处于休眠状态,直到成功获取锁才会返回。如下:
非公平锁(NonfairSync):lock
非公平锁NonfairSync的lock()与公平锁的lock()在获取锁的流程上是一直的,但是由于它是非公平的,所以获取锁机制还是有点不同。通过前面我们了解到公平锁在获取锁时采用的是公平策略(CLH队列),而非公平锁则采用非公平策略它无视等待队列,直接尝试获取。如下:
非公平锁NonfairSync的lock()与公平锁的lock()在获取锁的流程上是一直的,但是由于它是非公平的,所以获取锁机制还是有点不同。通过前面我们了解到公平锁在获取锁时采用的是公平策略(CLH队列),而非公平锁则采用非公平策略它无视等待队列,直接尝试获取。如下:
final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); }
lock()通过compareAndSetState尝试设置所状态,若成功直接将锁的拥有者设置为当前线程(简单粗暴),否则调用acquire()尝试获取锁;
说明:
lock()会先通过compareAndSet(0, 1)来判断“锁”是不是空闲状态。是的话,“当前线程”直接获取“锁”;否则的话,调用acquire(1)获取锁。
(01) compareAndSetState()是CAS函数,它的作用是比较并设置当前锁的状态。若锁的状态值为0,则设置锁的状态值为1。
(02) setExclusiveOwnerThread(Thread.currentThread())的作用是,设置“当前线程”为“锁”的持有者。
“公平锁”和“非公平锁”关于lock()的对比
公平锁 -- 公平锁的lock()函数,会直接调用acquire(1)。
非公平锁 -- 非公平锁会先判断当前锁的状态是不是空闲,是的话,就不排队,而是直接获取锁。
acquire
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
在非公平锁中acquire()的实现和公平锁一模一样,但是他们尝试获取锁的机制不同(也就是tryAcquire()的实现不同)。
protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); }
tryAcquire内部调用nonfairyTryAcquire:
final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
与公平锁相比,非公平锁的不同之处就体现在if(c==0)的条件代码块中:
//----------------非公平锁----- if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } //----------------公平锁----- if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } }
是否已经发现了不同之处。公平锁中要通过hasQueuedPredecessors()来判断该线程是否位于CLH队列中头部,是则获取锁;而非公平锁则不管你在哪个位置都直接获取锁。
说明:
根据代码,我们可以分析出,tryAcquire()的作用就是尝试去获取锁。
(01) 如果“锁”没有被任何线程拥有,则通过CAS函数设置“锁”的状态为acquires,同时,设置“当前线程”为锁的持有者,然后返回true。
(02) 如果“锁”的持有者已经是当前线程,则将更新锁的状态即可。
(03) 如果不术语上面的两种情况,则认为尝试失败。
ReentrantLock示例
通过对比“示例1”和“示例2”,我们能够清晰的认识lock和unlock的作用
示例1
1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 4 // LockTest1.java 5 // 仓库 6 class Depot { 7 private int size; // 仓库的实际数量 8 private Lock lock; // 独占锁 9 10 public Depot() { 11 this.size = 0; 12 this.lock = new ReentrantLock(); 13 } 14 15 public void produce(int val) { 16 lock.lock(); 17 try { 18 size += val; 19 System.out.printf("%s produce(%d) --> size=%d ", 20 Thread.currentThread().getName(), val, size); 21 } finally { 22 lock.unlock(); 23 } 24 } 25 26 public void consume(int val) { 27 lock.lock(); 28 try { 29 size -= val; 30 System.out.printf("%s consume(%d) <-- size=%d ", 31 Thread.currentThread().getName(), val, size); 32 } finally { 33 lock.unlock(); 34 } 35 } 36 }; 37 38 // 生产者 39 class Producer { 40 private Depot depot; 41 42 public Producer(Depot depot) { 43 this.depot = depot; 44 } 45 46 // 消费产品:新建一个线程向仓库中生产产品。 47 public void produce(final int val) { 48 new Thread() { 49 public void run() { 50 depot.produce(val); 51 } 52 }.start(); 53 } 54 } 55 56 // 消费者 57 class Customer { 58 private Depot depot; 59 60 public Customer(Depot depot) { 61 this.depot = depot; 62 } 63 64 // 消费产品:新建一个线程从仓库中消费产品。 65 public void consume(final int val) { 66 new Thread() { 67 public void run() { 68 depot.consume(val); 69 } 70 }.start(); 71 } 72 } 73 74 public class LockTest1 { 75 public static void main(String[] args) { 76 Depot mDepot = new Depot(); 77 Producer mPro = new Producer(mDepot); 78 Customer mCus = new Customer(mDepot); 79 80 mPro.produce(60); 81 mPro.produce(120); 82 mCus.consume(90); 83 mCus.consume(150); 84 mPro.produce(110); 85 } 86 }
运行结果:
Thread-0 produce(60) --> size=60 Thread-1 produce(120) --> size=180 Thread-3 consume(150) <-- size=30 Thread-2 consume(90) <-- size=-60 Thread-4 produce(110) --> size=50
结果分析:
(01) Depot 是个仓库。通过produce()能往仓库中生产货物,通过consume()能消费仓库中的货物。通过独占锁lock实现对仓库的互斥访问:在操作(生产/消费)仓库中货品前,会先通过lock()锁住仓库,操作完之后再通过unlock()解锁。
(02) Producer是生产者类。调用Producer中的produce()函数可以新建一个线程往仓库中生产产品。
(03) Customer是消费者类。调用Customer中的consume()函数可以新建一个线程消费仓库中的产品。
(04) 在主线程main中,我们会新建1个生产者mPro,同时新建1个消费者mCus。它们分别向仓库中生产/消费产品。
根据main中的生产/消费数量,仓库最终剩余的产品应该是50。运行结果是符合我们预期的!
这个模型存在两个问题:
(01) 现实中,仓库的容量不可能为负数。但是,此模型中的仓库容量可以为负数,这与现实相矛盾!
(02) 现实中,仓库的容量是有限制的。但是,此模型中的容量确实没有限制的!
这两个问题,我们稍微会讲到如何解决。现在,先看个简单的示例2;通过对比“示例1”和“示例2”,我们能更清晰的认识lock(),unlock()的用途。
示例2
1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 4 // LockTest2.java 5 // 仓库 6 class Depot { 7 private int size; // 仓库的实际数量 8 private Lock lock; // 独占锁 9 10 public Depot() { 11 this.size = 0; 12 this.lock = new ReentrantLock(); 13 } 14 15 public void produce(int val) { 16 // lock.lock(); 17 // try { 18 size += val; 19 System.out.printf("%s produce(%d) --> size=%d ", 20 Thread.currentThread().getName(), val, size); 21 // } catch (InterruptedException e) { 22 // } finally { 23 // lock.unlock(); 24 // } 25 } 26 27 public void consume(int val) { 28 // lock.lock(); 29 // try { 30 size -= val; 31 System.out.printf("%s consume(%d) <-- size=%d ", 32 Thread.currentThread().getName(), val, size); 33 // } finally { 34 // lock.unlock(); 35 // } 36 } 37 }; 38 39 // 生产者 40 class Producer { 41 private Depot depot; 42 43 public Producer(Depot depot) { 44 this.depot = depot; 45 } 46 47 // 消费产品:新建一个线程向仓库中生产产品。 48 public void produce(final int val) { 49 new Thread() { 50 public void run() { 51 depot.produce(val); 52 } 53 }.start(); 54 } 55 } 56 57 // 消费者 58 class Customer { 59 private Depot depot; 60 61 public Customer(Depot depot) { 62 this.depot = depot; 63 } 64 65 // 消费产品:新建一个线程从仓库中消费产品。 66 public void consume(final int val) { 67 new Thread() { 68 public void run() { 69 depot.consume(val); 70 } 71 }.start(); 72 } 73 } 74 75 public class LockTest2 { 76 public static void main(String[] args) { 77 Depot mDepot = new Depot(); 78 Producer mPro = new Producer(mDepot); 79 Customer mCus = new Customer(mDepot); 80 81 mPro.produce(60); 82 mPro.produce(120); 83 mCus.consume(90); 84 mCus.consume(150); 85 mPro.produce(110); 86 } 87 }
(某一次)运行结果:
Thread-0 produce(60) --> size=-60 Thread-4 produce(110) --> size=50 Thread-2 consume(90) <-- size=-60 Thread-1 produce(120) --> size=-60 Thread-3 consume(150) <-- size=-60
结果说明:
“示例2”在“示例1”的基础上去掉了lock锁。在“示例2”中,仓库中最终剩余的产品是-60,而不是我们期望的50。原因是我们没有实现对仓库的互斥访问。
示例3
在“示例3”中,我们通过Condition去解决“示例1”中的两个问题:“仓库的容量不可能为负数”以及“仓库的容量是有限制的”。
解决该问题是通过Condition。Condition是需要和Lock联合使用的:通过Condition中的await()方法,能让线程阻塞[类似于wait()];通过Condition的signal()方法,能让唤醒线程[类似于notify()]。
1 import java.util.concurrent.locks.Lock; 2 import java.util.concurrent.locks.ReentrantLock; 3 import java.util.concurrent.locks.Condition; 4 5 // LockTest3.java 6 // 仓库 7 class Depot { 8 private int capacity; // 仓库的容量 9 private int size; // 仓库的实际数量 10 private Lock lock; // 独占锁 11 private Condition fullCondtion; // 生产条件 12 private Condition emptyCondtion; // 消费条件 13 14 public Depot(int capacity) { 15 this.capacity = capacity; 16 this.size = 0; 17 this.lock = new ReentrantLock(); 18 this.fullCondtion = lock.newCondition(); 19 this.emptyCondtion = lock.newCondition(); 20 } 21 22 public void produce(int val) { 23 lock.lock(); 24 try { 25 // left 表示“想要生产的数量”(有可能生产量太多,需多此生产) 26 int left = val; 27 while (left > 0) { 28 // 库存已满时,等待“消费者”消费产品。 29 while (size >= capacity) 30 fullCondtion.await(); 31 // 获取“实际生产的数量”(即库存中新增的数量) 32 // 如果“库存”+“想要生产的数量”>“总的容量”,则“实际增量”=“总的容量”-“当前容量”。(此时填满仓库) 33 // 否则“实际增量”=“想要生产的数量” 34 int inc = (size+left)>capacity ? (capacity-size) : left; 35 size += inc; 36 left -= inc; 37 System.out.printf("%s produce(%3d) --> left=%3d, inc=%3d, size=%3d ", 38 Thread.currentThread().getName(), val, left, inc, size); 39 // 通知“消费者”可以消费了。 40 emptyCondtion.signal(); 41 } 42 } catch (InterruptedException e) { 43 } finally { 44 lock.unlock(); 45 } 46 } 47 48 public void consume(int val) { 49 lock.lock(); 50 try { 51 // left 表示“客户要消费数量”(有可能消费量太大,库存不够,需多此消费) 52 int left = val; 53 while (left > 0) { 54 // 库存为0时,等待“生产者”生产产品。 55 while (size <= 0) 56 emptyCondtion.await(); 57 // 获取“实际消费的数量”(即库存中实际减少的数量) 58 // 如果“库存”<“客户要消费的数量”,则“实际消费量”=“库存”; 59 // 否则,“实际消费量”=“客户要消费的数量”。 60 int dec = (size<left) ? size : left; 61 size -= dec; 62 left -= dec; 63 System.out.printf("%s consume(%3d) <-- left=%3d, dec=%3d, size=%3d ", 64 Thread.currentThread().getName(), val, left, dec, size); 65 fullCondtion.signal(); 66 } 67 } catch (InterruptedException e) { 68 } finally { 69 lock.unlock(); 70 } 71 } 72 73 public String toString() { 74 return "capacity:"+capacity+", actual size:"+size; 75 } 76 }; 77 78 // 生产者 79 class Producer { 80 private Depot depot; 81 82 public Producer(Depot depot) { 83 this.depot = depot; 84 } 85 86 // 消费产品:新建一个线程向仓库中生产产品。 87 public void produce(final int val) { 88 new Thread() { 89 public void run() { 90 depot.produce(val); 91 } 92 }.start(); 93 } 94 } 95 96 // 消费者 97 class Customer { 98 private Depot depot; 99 100 public Customer(Depot depot) { 101 this.depot = depot; 102 } 103 104 // 消费产品:新建一个线程从仓库中消费产品。 105 public void consume(final int val) { 106 new Thread() { 107 public void run() { 108 depot.consume(val); 109 } 110 }.start(); 111 } 112 } 113 114 public class LockTest3 { 115 public static void main(String[] args) { 116 Depot mDepot = new Depot(100); 117 Producer mPro = new Producer(mDepot); 118 Customer mCus = new Customer(mDepot); 119 120 mPro.produce(60); 121 mPro.produce(120); 122 mCus.consume(90); 123 mCus.consume(150); 124 mPro.produce(110); 125 } 126 }
(某一次)运行结果:
Thread-0 produce( 60) --> left= 0, inc= 60, size= 60 Thread-1 produce(120) --> left= 80, inc= 40, size=100 Thread-2 consume( 90) <-- left= 0, dec= 90, size= 10 Thread-3 consume(150) <-- left=140, dec= 10, size= 0 Thread-4 produce(110) --> left= 10, inc=100, size=100 Thread-3 consume(150) <-- left= 40, dec=100, size= 0 Thread-4 produce(110) --> left= 0, inc= 10, size= 10 Thread-3 consume(150) <-- left= 30, dec= 10, size= 0 Thread-1 produce(120) --> left= 0, inc= 80, size= 80 Thread-3 consume(150) <-- left= 0, dec= 30, size= 50