• Magic FZU


    Kim is a magician, he can use n kinds of magic, number from 1 to n. We use string Si to describe magic i. Magic Si will make Wi points of damage. Note that Wi may change over time.

    Kim obey the following rules to use magic:

    Each turn, he picks out one magic, suppose that is magic Sk, then Kim will use all the magic i satisfying the following condition:

    1. Wi<=Wk

    2. Sk is a suffix of Si.

    Now Kim wondering how many magic will he use each turn.

    Note that all the strings are considered as a suffix of itself.

    Input

    First line the number of test case T. (T<=6)

    For each case, first line an integer n (1<=n<=1000) stand for the number of magic.

    Next n lines, each line a string Si (Length of Si<=1000) and an integer Wi (1<=Wi<=1000), stand for magic i and it’s damage Wi.

    Next line an integer Q (1<=Q<=80000), stand for there are Q operations. There are two kinds of operation.

    “1 x y” means Wx is changed to y.

    “2 x” means Kim has picked out magic x, and you should tell him how many magic he will use in this turn.

    Note that different Si can be the same.

    Output

    For each query, output the answer.

    Sample Input

    1
    5
    abracadabra 2
    adbra 1
    bra 3
    abr 3
    br 2
    5
    2 3
    2 5
    1 2 5
    2 3
    2 2
    

    Sample Output

    3
    1
    2
    1

    题意:

    给n个长度<=1000的字符串S[i](仅由小写字母构成),每个字符串有权值w[i]
    有两种操作
    2 k 选中第k个字符串,问你有多少个字符串满足w[i]<=w[k]而且S[k]是S[i]的后缀
    1 k y 把第k个字符串的权值修改为

    暴力HASH 预处理下后缀

    然后暴力查询

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <queue>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <set>
     7 #include <iostream>
     8 #include <map>
     9 #include <stack>
    10 #include <string>
    11 #include <vector>
    12 #define  pi acos(-1.0)
    13 #define  eps 1e-6
    14 #define  fi first
    15 #define  se second
    16 #define  lson l,m,rt<<1
    17 #define  rson m+1,r,rt<<1|1
    18 #define  bug         printf("******
    ")
    19 #define  mem(a,b)    memset(a,b,sizeof(a))
    20 #define  fuck(x)     cout<<"["<<x<<"]"<<endl
    21 #define  f(a)        a*a
    22 #define  sf(n)       scanf("%d", &n)
    23 #define  sff(a,b)    scanf("%d %d", &a, &b)
    24 #define  sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
    25 #define  sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
    26 #define  pf          printf
    27 #define  FRE(i,a,b)  for(i = a; i <= b; i++)
    28 #define  FREE(i,a,b) for(i = a; i >= b; i--)
    29 #define  FRL(i,a,b)  for(i = a; i < b; i++)
    30 #define  FRLL(i,a,b) for(i = a; i > b; i--)
    31 #define  FIN         freopen("DATA.txt","r",stdin)
    32 #define  gcd(a,b)    __gcd(a,b)
    33 #define  lowbit(x)   x&-x
    34 #pragma  comment (linker,"/STACK:102400000,102400000")
    35 using namespace std;
    36 typedef long long  LL;
    37 typedef unsigned long long ULL;
    38 const int INF = 0x7fffffff;
    39 const int mod = 1e9 + 7;
    40 const int maxn = 1e3 + 10;
    41 int t, n, m, val[maxn], len[maxn];
    42 char mp[maxn][maxn];
    43 vector<int>cnt[maxn];
    44 ULL HA[maxn][maxn], p[maxn], seed = 99959;
    45 ULL getcnt(int id, int l, int r) {
    46     return HA[id][r] - HA[id][l - 1] * p[r - l + 1];
    47 }
    48 void init() {
    49     p[0] = 1;
    50     for (int i = 1 ; i < maxn ; i++) p[i] = p[i - 1] * seed;
    51     for (int i = 1 ; i <= n ; i++) {
    52         HA[i][0] = 0;
    53         for (int j = 1 ; j <= len[i] ; j++) {
    54             HA[i][j] = HA[i][j - 1] * seed + mp[i][len[i] - j + 1];
    55         }
    56     }
    57     for (int i = 1 ; i <= n ; i++) {
    58         cnt[i].push_back(i);
    59         for (int j = i + 1 ; j <= n ; j++ ) {
    60             if (len[i] == len[j] && HA[i][len[i]] == HA[j][len[j]]) cnt[i].push_back(j), cnt[j].push_back(i);
    61             else if (len[i] > len[j] && HA[j][len[j]] == getcnt(i, 1, len[j] )) cnt[j].push_back(i);
    62             else if (len[i] < len[j] && HA[i][len[i]] == getcnt(j, 1, len[i] )) cnt[i].push_back(j);
    63         }
    64     }
    65 }
    66 int main() {
    67     //FIN;
    68     sf(t);
    69     while(t--) {
    70         sf(n);
    71         for (int i = 1 ; i <= n ; i++) {
    72             cnt[i].clear();
    73             scanf("%s%d", mp[i] + 1, &val[i]);
    74             len[i] = strlen(mp[i] + 1);
    75         }
    76         init();
    77         sf(m);
    78         while(m--) {
    79             int op, x, y;
    80             sf(op);
    81             if (op == 1) {
    82                 sff(x, y);
    83                 val[x] = y;
    84             } else {
    85                 sf(x);
    86                 int ans = 0;
    87                 for (int i = 0 ; i < cnt[x].size() ; i++)
    88                     if (val[cnt[x][i]] <= val[x]) ans++;
    89                 printf("%d
    ", ans);
    90             }
    91         }
    92     }
    93     return 0;
    94 }
    
    
  • 相关阅读:
    如何注册一个ens域名
    storj
    Polygon
    拜占庭容错
    10秒钟完成metamask上任意公链主网添加
    Logistic Regression
    Normal Equations
    神经网络学习笔记 lecture3:The backpropagation learning proccedure
    Three Types of Learning
    Exercise: Logistic Regression and Newton's Method
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9515687.html
Copyright © 2020-2023  润新知