• C. Liebig's Barrels


    You have m = n·k wooden staves. The i-th stave has length ai. You have to assemble nbarrels consisting of k staves each, you can use any k staves to construct a barrel. Each stave must belong to exactly one barrel.

    Let volume vj of barrel j be equal to the length of the minimal stave in it.

    You want to assemble exactly n barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed l, i.e. |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.

    Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.

    Input

    The first line contains three space-separated integers nk and l (1 ≤ n, k ≤ 105,1 ≤ n·k ≤ 105, 0 ≤ l ≤ 109).

    The second line contains m = n·k space-separated integers a1, a2, ..., am (1 ≤ ai ≤ 109) — lengths of staves.

    Output

    Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly n barrels satisfying the condition |vx - vy| ≤ l for any 1 ≤ x ≤ n and1 ≤ y ≤ n.

    Examples
    input
    Copy
    4 2 1
    2 2 1 2 3 2 2 3
    output
    Copy
    7
    input
    Copy
    2 1 0
    10 10
    output
    Copy
    20
    input
    Copy
    1 2 1
    5 2
    output
    Copy
    2
    input
    Copy
    3 2 1
    1 2 3 4 5 6
    output
    Copy
    0
    Note

    In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3].

    In the second example you can form the following barrels: [10], [10].

    In the third example you can form the following barrels: [2, 5].

    In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.

     诸事不顺,操

    一个贪心,其实就是分为n堆数,每堆数的最小值相差不能大于limit ,

    求出n堆数最小值的和

    upper_bound 返回的是第一个大于的数,减去1就是小于等于的数了

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 long long a[maxn];
     5 int n, k, limit;
     6 int main() {
     7     scanf("%d%d%d", &n, &k, &limit);
     8     for (int i = 0 ; i < n * k ; i++)
     9         scanf("%lld", &a[i]);
    10     sort(a, a + n * k );
    11     int temp = upper_bound(a, a + n * k, a[0] + limit) - a;
    12     long long ans = 0;
    13     int sum = n * k;
    14     if (temp >= n) {
    15         int temp1=temp;
    16         while(sum > temp && sum - temp >= k - 1) {
    17             sum -= k - 1;
    18             ans += a[--temp1];
    19         }
    20         for (int i = 0 ; i * k < temp1 ; i++)
    21             ans += a[i * k];
    22     }
    23     printf("%lld
    ", ans);
    24     return 0;
    25 }
  • 相关阅读:
    uniapp
    vue -element admin 修改request,headers添加参数
    uniapp
    css
    uniapp
    uniapp
    vue
    vue
    vue -element 修复select下拉框在移动端需要点击两次才能选中的问题
    vue
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9071432.html
Copyright © 2020-2023  润新知