• Drainage Ditches~网络流模板


    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

      1 #include<stdio.h>
      2 #include<string>
      3 #include<string.h>
      4 #include<vector>
      5 #include<queue>
      6 using namespace std;
      7 const int maxn = 1e5 + 10;
      8 const int INF = 999999999;
      9 struct node {
     10     int from, to, cap, flow;
     11 };
     12 struct Dinic {
     13     int n, m, s, t;
     14     vector<node>nodes;
     15     vector<int>g[maxn];
     16     int vis[maxn];
     17     int d[maxn];
     18     int cur[maxn];
     19     void clearall(int n) {
     20         for (int i = 0 ; i < n ; i++) g[i].clear();
     21         nodes.clear();
     22     }
     23     void clearflow() {
     24         int len = nodes.size();
     25         for (int i = 0 ; i < len ; i++) nodes[i].flow = 0;
     26     }
     27     void add(int from, int to, int cap) {
     28         nodes.push_back((node) {
     29             from, to, cap, 0
     30         });
     31         nodes.push_back((node) {
     32             to, from, 0, 0
     33         });
     34         m = nodes.size();
     35         g[from].push_back(m - 2);
     36         g[to].push_back(m - 1);
     37     }
     38     bool bfs() {
     39         memset(vis, 0, sizeof(vis));
     40         queue<int>q;
     41         q.push(s);
     42         d[s] = 0;
     43         vis[s] = 1;
     44         while(!q.empty()) {
     45             int x = q.front();
     46             q.pop();
     47             int len = g[x].size();
     48             for (int i = 0 ; i < len ; i++) {
     49                 node &e = nodes[g[x][i]];
     50                 if (!vis[e.to] && e.cap > e.flow ) {
     51                     vis[e.to] = 1;
     52                     d[e.to] = d[x] + 1;
     53                     q.push(e.to);
     54                 }
     55             }
     56         }
     57         return vis[t];
     58     }
     59     int dfs(int x, int a) {
     60         if  (x == t || a == 0) return a;
     61         int flow = 0, f, len = g[x].size();
     62         for (int &i = cur[x] ; i < len ; i++) {
     63             node & e = nodes[g[x][i]];
     64             if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0 ) {
     65                 e.flow += f;
     66                 nodes[g[x][i] ^ 1].flow -= f;
     67                 flow += f;
     68                 a -= f;
     69                 if (a == 0) break;
     70             }
     71         }
     72         return flow;
     73     }
     74     int maxflow(int a, int b) {
     75         s = a;
     76         t = b;
     77         int flow = 0;
     78         while(bfs()) {
     79             memset(cur, 0, sizeof(cur));
     80             flow += dfs(s, INF);
     81         }
     82         return flow;
     83     }
     84     vector<int>mincut() {
     85         vector<int>ans;
     86         int len = nodes.size();
     87         for (int i = 0 ; i < len ; i++) {
     88             node & e = nodes[i];
     89             if ( vis[e.from] && !vis[e.to] && e.cap > 0 ) ans.push_back(i);
     90         }
     91         return ans;
     92     }
     93     void reduce() {
     94         int len = nodes.size();
     95         for (int i = 0 ; i < len ; i++) nodes[i].cap -= nodes[i].flow;
     96     }
     97 } f;
     98 int main() {
     99     int n, m;
    100     while(~scanf("%d%d", &m, &n)) {
    101         f.clearall(n);
    102         f.clearflow();
    103         for (int i = 0 ; i < m ; i++) {
    104             int u, v, c;
    105             scanf("%d%d%d", &u, &v, &c);
    106             f.add(u, v, c);
    107         }
    108         printf("%d
    ", f.maxflow(1, n));
    109     }
    110     return 0;
    111 }
  • 相关阅读:
    艾伟_转载:ASP.NET缓存 狼人:
    艾伟_转载:VS 2010 和 .NET 4.0 系列之《在VS 2010中查询和导航代码》篇 狼人:
    艾伟_转载:Visual Studio DSL 入门 2 狼人:
    艾伟_转载:VS 2010 和 .NET 4.0 系列之《代码优化的Web开发Profile》篇 狼人:
    艾伟_转载:对ArrayList中的自定义类型进行搜索 狼人:
    艾伟_转载:总结字符串比较函数 狼人:
    poj 2739 Sum of Consecutive Prime Numbers
    BBIT工作感想(二)
    Zenoss4.2.3对中文事件的部分支持修改
    第五周项目一(扩展)矩形类
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/8870369.html
Copyright © 2020-2023  润新知