• Drainage Ditches~网络流模板


    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

      1 #include<stdio.h>
      2 #include<string>
      3 #include<string.h>
      4 #include<vector>
      5 #include<queue>
      6 using namespace std;
      7 const int maxn = 1e5 + 10;
      8 const int INF = 999999999;
      9 struct node {
     10     int from, to, cap, flow;
     11 };
     12 struct Dinic {
     13     int n, m, s, t;
     14     vector<node>nodes;
     15     vector<int>g[maxn];
     16     int vis[maxn];
     17     int d[maxn];
     18     int cur[maxn];
     19     void clearall(int n) {
     20         for (int i = 0 ; i < n ; i++) g[i].clear();
     21         nodes.clear();
     22     }
     23     void clearflow() {
     24         int len = nodes.size();
     25         for (int i = 0 ; i < len ; i++) nodes[i].flow = 0;
     26     }
     27     void add(int from, int to, int cap) {
     28         nodes.push_back((node) {
     29             from, to, cap, 0
     30         });
     31         nodes.push_back((node) {
     32             to, from, 0, 0
     33         });
     34         m = nodes.size();
     35         g[from].push_back(m - 2);
     36         g[to].push_back(m - 1);
     37     }
     38     bool bfs() {
     39         memset(vis, 0, sizeof(vis));
     40         queue<int>q;
     41         q.push(s);
     42         d[s] = 0;
     43         vis[s] = 1;
     44         while(!q.empty()) {
     45             int x = q.front();
     46             q.pop();
     47             int len = g[x].size();
     48             for (int i = 0 ; i < len ; i++) {
     49                 node &e = nodes[g[x][i]];
     50                 if (!vis[e.to] && e.cap > e.flow ) {
     51                     vis[e.to] = 1;
     52                     d[e.to] = d[x] + 1;
     53                     q.push(e.to);
     54                 }
     55             }
     56         }
     57         return vis[t];
     58     }
     59     int dfs(int x, int a) {
     60         if  (x == t || a == 0) return a;
     61         int flow = 0, f, len = g[x].size();
     62         for (int &i = cur[x] ; i < len ; i++) {
     63             node & e = nodes[g[x][i]];
     64             if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0 ) {
     65                 e.flow += f;
     66                 nodes[g[x][i] ^ 1].flow -= f;
     67                 flow += f;
     68                 a -= f;
     69                 if (a == 0) break;
     70             }
     71         }
     72         return flow;
     73     }
     74     int maxflow(int a, int b) {
     75         s = a;
     76         t = b;
     77         int flow = 0;
     78         while(bfs()) {
     79             memset(cur, 0, sizeof(cur));
     80             flow += dfs(s, INF);
     81         }
     82         return flow;
     83     }
     84     vector<int>mincut() {
     85         vector<int>ans;
     86         int len = nodes.size();
     87         for (int i = 0 ; i < len ; i++) {
     88             node & e = nodes[i];
     89             if ( vis[e.from] && !vis[e.to] && e.cap > 0 ) ans.push_back(i);
     90         }
     91         return ans;
     92     }
     93     void reduce() {
     94         int len = nodes.size();
     95         for (int i = 0 ; i < len ; i++) nodes[i].cap -= nodes[i].flow;
     96     }
     97 } f;
     98 int main() {
     99     int n, m;
    100     while(~scanf("%d%d", &m, &n)) {
    101         f.clearall(n);
    102         f.clearflow();
    103         for (int i = 0 ; i < m ; i++) {
    104             int u, v, c;
    105             scanf("%d%d%d", &u, &v, &c);
    106             f.add(u, v, c);
    107         }
    108         printf("%d
    ", f.maxflow(1, n));
    109     }
    110     return 0;
    111 }
  • 相关阅读:
    Linux编辑器- vi / vim
    Java使用POI对Excel进行基本操作(4)-Excel中绘制图片
    Java使用POI对Excel进行基本操作(3)-合并单元格
    Java使用POI对Excel进行基本操作(2)-基本操作和样式设置
    Java使用POI对Excel进行基本操作(1)-概述和maven依赖
    Linux之docker搭建
    docker的个人理解
    python接口自动化-requests-toolbelt处理multipart/form-data
    python3.6安装lxml库
    pytest之assert断言
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/8870369.html
Copyright © 2020-2023  润新知