• tensorflow高级库


    1、tf.app.flags

          tf定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv。tf.app.flags.DEFINE_xxx()就是添加命令行的optional argument(可选参数),而tf.app.flags.FLAGS可以从对应的命令行参数取出参数。

    import tensorflow as tf
    
    # 第一个是参数名称,第二个参数是默认值,第三个是参数描述
    tf.app.flags.DEFINE_float('float_name', 0.01, 'input a float')
    tf.app.flags.DEFINE_string('str_name', 'def_v_1', "descrip1")
    tf.app.flags.DEFINE_integer('int_name', 10, "descript2")
    tf.app.flags.DEFINE_boolean('bool_name', False, "descript3")
    
    FLAGS = tf.app.flags.FLAGS
    
    
    # 必须带参数,否则:'TypeError: main() takes no arguments (1 given)';   main的参数名随意定义,无要求
    def main(_):
    	print(FLAGS.float_name)
    	print(FLAGS.str_name)
    	print(FLAGS.int_name)
    	print(FLAGS.bool_name)
    
    
    if __name__ == '__main__':
    	tf.app.run()  # 执行main函数

      

    执行:

    (tf_learn) [@l_106 ~/ssd-balancap]$ python exc2.py 
    0.01
    def_v_1
    10
    False
    (tf_learn) [@l_106 ~/ssd-balancap]$ python exc2.py --float_name 0.6 --str_name test_str --int_name 99 --bool_name True
    0.6
    test_str
    99
    True
    

     

    2、slim

    导入

    import tensorflow.contrib.slim as slim

    arg_scope:用来控制每一层的默认超参数的。

    定义变量

          变量分为两类:模型变量和局部变量。局部变量是不作为模型参数保存的,而模型变量会再save的时候保存下来。这个玩过tensorflow的人都会明白,诸如global_step之类的就是局部变量。slim中可以写明变量存放的设备,正则和初始化规则。还有获取变量的函数也需要注意一下,get_variables是返回所有的变量。

    定义卷积层:

    input = [1,224,224,3]
    #tensorflow
    with tf.name_scope('conv1_1') as scope:
      kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
                                               stddev=1e-1), name='weights')
      conv = tf.nn.conv2d(input, kernel, [1, 1, 1, 1], padding='SAME')
      biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                           trainable=True, name='biases')
      bias = tf.nn.bias_add(conv, biases)
      conv1 = tf.nn.relu(bias, name=scope)
    #slim
    net = slim.conv2d(input, 128, [3, 3], scope='conv1_1')

    repeat操作:

    repeat操作可以减少代码量。

    net = ''
    #原版
    net = slim.conv2d(net, 256, [3, 3], scope='conv3_1')
    net = slim.conv2d(net, 256, [3, 3], scope='conv3_2')
    net = slim.conv2d(net, 256, [3, 3], scope='conv3_3')
    net = slim.max_pool2d(net, [2, 2], scope='pool2')
    #repeat简化版
    net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
    net = slim.max_pool2d(net, [2, 2], scope='pool2')

    stack操作:

    stack是处理卷积核或者输出不一样的情况。

    #普通版
    x = slim.fully_connected(x, 32, scope='fc/fc_1')
    x = slim.fully_connected(x, 64, scope='fc/fc_2')
    x = slim.fully_connected(x, 128, scope='fc/fc_3')
    #stack简化版
    slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc')
    
    #普通版:
    x = slim.conv2d(x, 32, [3, 3], scope='core/core_1')
    x = slim.conv2d(x, 32, [1, 1], scope='core/core_2')
    x = slim.conv2d(x, 64, [3, 3], scope='core/core_3')
    x = slim.conv2d(x, 64, [1, 1], scope='core/core_4')
    #stack简化版:
    slim.stack(x, slim.conv2d, [(32, [3, 3]), (32, [1, 1]), (64, [3, 3]), (64, [1, 1])], scope='core')

    argscope:

    #普通版
    net = slim.conv2d(inputs, 64, [11, 11], 4, padding='SAME',
                      weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      weights_regularizer=slim.l2_regularizer(0.0005), scope='conv1')
    net = slim.conv2d(net, 128, [11, 11], padding='VALID',
                      weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      weights_regularizer=slim.l2_regularizer(0.0005), scope='conv2')
    net = slim.conv2d(net, 256, [11, 11], padding='SAME',
                      weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      weights_regularizer=slim.l2_regularizer(0.0005), scope='conv3')
    #arg_scope简化版
    with slim.arg_scope([slim.conv2d], padding='SAME',
    					  weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
    					  weights_regularizer=slim.l2_regularizer(0.0005)):
    	net = slim.conv2d(inputs, 64, [11, 11], scope='conv1')
    	net = slim.conv2d(net, 128, [11, 11], padding='VALID', scope='conv2')
    	net = slim.conv2d(net, 256, [11, 11], scope='conv3')

    arg_scope的作用范围内,是定义了指定层的默认参数,若想特别指定某些层的参数,可以重新赋值(相当于重写),如上倒数第二行代码。那如果除了卷积层还有其他层呢?那就要如下定义:

  • 相关阅读:
    TX1/TX2 Qt安装与配置
    Gsteramer 环境配置
    NVIDIA Jetson TX2刷机
    TX2之多线程读取视频及深度学习推理
    搭建USB摄像头转RTSP服务器的多种方法
    TX2 五种功耗模式
    NVIDIA TX1/TX2 对比
    tf.reduce_mean
    关闭tensorflow运行时的警告信息
    sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set
  • 原文地址:https://www.cnblogs.com/qjoanven/p/7808647.html
Copyright © 2020-2023  润新知