• 迪杰斯特拉


    迪杰斯特拉

    INF_val = 100000 
      
    class Dijkstra_Path():  
        def __init__(self, node_map):  
            self.node_map = node_map  
            self.node_length = len(node_map)  
            self.used_node_list = []  
            self.collected_node_dict = {}  
          
        def __call__(self, from_node, to_node):  
            self.from_node = from_node  
            self.to_node = to_node  
            self._init_dijkstra()  
            return self._format_path()  
      
        def _init_dijkstra(self):  
            ## Add from_node to used_node_list  
            self.used_node_list.append(self.from_node)  
            for index1 in range(self.node_length):  
                self.collected_node_dict[index1] = [INF_val, -1]  
        
            self.collected_node_dict[self.from_node] = [0, -1] # from_node don't have pre_node  
            for index1, weight_val in enumerate(self.node_map[self.from_node]):  
                if weight_val:  
                    self.collected_node_dict[index1] = [weight_val, self.from_node] # [weight_val, pre_node]  
              
            self._foreach_dijkstra()  
          
        def _foreach_dijkstra(self):  
            while(len(self.used_node_list) < self.node_length - 1):  
                min_key = -1  
                min_val = INF_val  
                for key, val in self.collected_node_dict.items(): # 遍历已有权值节点  
                    if val[0] < min_val and key not in self.used_node_list:  
                        min_key = key  
                        min_val = val[0]  
      
                ## 把最小的值加入到used_node_list          
                if min_key != -1:  
                    self.used_node_list.append(min_key)  
      
                for index1, weight_val in enumerate(self.node_map[min_key]):  
                    ## 对刚加入到used_node_list中的节点的相邻点进行遍历比较  
                    if weight_val > 0 and self.collected_node_dict[index1][0] > weight_val + min_val:  
                        self.collected_node_dict[index1][0] = weight_val + min_val # update weight_val  
                        self.collected_node_dict[index1][1] = min_key  
      
      
        def _format_path(self):  
            node_list = []  
            temp_node = self.to_node  
            node_list.append((temp_node, self.collected_node_dict[temp_node][0]))  
            while self.collected_node_dict[temp_node][1] != -1:  
              temp_node = self.collected_node_dict[temp_node][1]  
              node_list.append((temp_node, self.collected_node_dict[temp_node][0]))  
            node_list.reverse()  
            return node_list  
      
    def set_node_map(node_map, node, node_list):  
        for x, y, val in node_list:  
            node_map[node.index(x)][node.index(y)] = node_map[node.index(y)][node.index(x)] = val  
      
          
    if __name__ == "__main__":  
        node = ['A', 'B', 'C', 'D', 'E', 'F', 'G']   //顶点
        node_list = [('A', 'F', 9), ('A', 'B', 10), ('A', 'G', 15), ('B', 'F', 2),    //点与点间的距离
                     ('G', 'F', 3), ('G', 'E', 12), ('G', 'C', 10), ('C', 'E', 1),  
                     ('E', 'D', 7)]  
        
        ## init node_map to 0  
        node_map = [[0 for val in range(len(node))] for val in range(len(node))]  
        
        ## set node_map  
        set_node_map(node_map, node, node_list)  
        
        ## select one node to obj node, e.g. A --> D(node[0] --> node[3])  
        from_node = node.index('A')  
        to_node = node.index('E')  
        dijkstrapath = Dijkstra_Path(node_map)  
        path = dijkstrapath(from_node, to_node)  
        print(path) 


    ------------------------------------------------------------------------------
    [(0, 0), (5, 9), (6, 12), (2, 22), (4, 23)]         (点,权值)

    Floyd算法(Floyd-Warshallalgorithm)又称为弗洛伊德算法

    INF_val = 9999

    class Floyd_Path():
    def __init__(self, node, node_map, path_map):
    self.node = node
    self.node_map = node_map
    self.node_length = len(node_map)
    self.path_map = path_map
    self._init_Floyd()

    def __call__(self, from_node, to_node):
    self.from_node = from_node
    self.to_node = to_node
    return self._format_path()

    def _init_Floyd(self):
    for k in range(self.node_length):
    for i in range(self.node_length):
    for j in range(self.node_length):
    tmp = self.node_map[i][k] + self.node_map[k][j]
    if self.node_map[i][j] > tmp:
    self.node_map[i][j] = tmp
    self.path_map[i][j] = self.path_map[i][k]

    print('_init_Floyd is end')


    def _format_path(self):
    node_list = []
    temp_node = self.from_node
    obj_node = self.to_node
    print("the shortest path is: %d"%(self.node_map[temp_node][obj_node]))
    node_list.append(self.node[temp_node])
    while True:
    node_list.append(self.node[self.path_map[temp_node][obj_node]])
    temp_node = self.path_map[temp_node][obj_node]
    if temp_node == obj_node:
    break;

    return node_list





    def set_node_map(node_map, node, node_list, path_map):
    for i in range(len(node)):
    ## 对角线为0
    node_map[i][i] = 0
    for x, y, val in node_list:
    node_map[node.index(x)][node.index(y)] = node_map[node.index(y)][node.index(x)] = val
    path_map[node.index(x)][node.index(y)] = node.index(y)
    path_map[node.index(y)][node.index(x)] = node.index(x)


    if __name__ == "__main__":
    node = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
    node_list = [('A', 'F', 9), ('A', 'B', 10), ('A', 'G', 15), ('B', 'F', 2),
    ('G', 'F', 3), ('G', 'E', 12), ('G', 'C', 10), ('C', 'E', 1),
    ('E', 'D', 7)]

    ## node_map[i][j] 存储i到j的最短距离
    node_map = [[INF_val for val in range(len(node))] for val in range(len(node))]
    ## path_map[i][j]=j 表示i到j的最短路径是经过顶点j
    path_map = [[0 for val in range(len(node))] for val in range(len(node))]

    ## set node_map
    set_node_map(node_map, node, node_list, path_map)


    ## select one node to obj node, e.g. A --> D(node[0] --> node[3])
    from_node = node.index('A')     //起点
    to_node = node.index('E')     //终点 
    Floydpath = Floyd_Path(node, node_map, path_map)
    path = Floydpath(from_node, to_node)
    print(path)

    -----------------------------------------------------------------------------------------

    _init_Floyd is end
    the shortest path is: 23
    ['A', 'F', 'G', 'C', 'E']
  • 相关阅读:
    【http】HTTP请求方法 之 OPTIONS
    【javascript基础】函数前面的一元操作符
    【javascript基础】运算符优先级
    【移动互联网开发】Zepto 使用中的一些注意点 【转】
    【jQuery】IE9 jQuery 1.9.1 报 Syntax error,unrecognized expression 错误
    一月收集几个有用的谷歌Chrome插件
    【Sizzle学习】之关于【初探 jQuery 的 Sizzle 选择器】这篇文章里的小bug
    【第三方类库】underscore.js源码---each forEach 每次迭代跟{}比较的疑惑
    vue-cli脚手架npm相关文件解读(2)webpack.prod.conf.js
    vue-cli脚手架npm相关文件解读(1)webpack.base.conf.js
  • 原文地址:https://www.cnblogs.com/qj696/p/15235326.html
Copyright © 2020-2023  润新知