一、概念
R-B Tree,全称是Red-Black Tree又称红黑树,它是一种特殊的二叉查找树,红黑树的每个节点上都有存储位表示节点的颜色,可以是红或黑。
二、特性
- 每个节点或者是红色,或者是黑色
- 根节点是黑色的
- 每个叶子节点(NIL)是黑色的。注意:这里的叶子节点,是指为空的叶子节点
- 如果一个节点是红色的,则它的子节点必须是黑色的
- 从任意一个节点到其叶子的所有路径中,所包含的黑节点数量是相同的
特性解析1:根据特性4可知,从每个叶子节点到根节点的所有路径中不能有两个连续的红节点
特性解析2:根据特性5可知,没有一条路径会比其它路径长出两倍,因而红黑树是接近平衡的二叉树
三、应用
红黑树主要用于存储有序的数据,它的时间复杂度是O(logn),非常高效
四、基本操作——插入
1、简介
红黑树的基本操作是添加和删除,在对红黑树进行添加和删除之后,都会用到旋转方法。为什么要用旋转方法呢?因为添加或删除红黑树的节点之后,红黑树就发生了变化,可能就不满足红黑树的5条性质了,也就不是一颗红黑树了。而通过旋转可以使这棵树重新成为红黑树,即旋转的目的就是为了保证红黑树的特性
左旋:对节点x进行左旋,意味着将“x的右孩子变成x的父亲”,而将“x原先的右孩子的左孩子变成x的右孩子”。即左旋中的“左”是指将别旋转的节点变成一个左节点
右旋:对节点x进行右旋,意味着将“x的左孩子变成x的父亲,而将”x原先的左孩子的右孩子变成x的右孩子“。即右旋中的”右“是指将被旋转的节点变成一个右节点
2、插入规则
新插入的节点都为红色
3、红黑树插入的4种情形
-
新节点位于根节点,其没有父节点时,处理思路:将该节点直接设为黑色即可
-
新节点的父节点已然是黑色时,处理思路:不用动,这已然是一颗红黑树
-
父节点和叔节点都是红色时,处理思路:a.将父节点和叔节点设为黑色;b.将祖父节点设为红色;c.将祖父节点设为当前节点,并继续对新当前节点进行操作
-
父节点是红色,叔节点是黑色时,又分如下四种情况:
当前节点是父亲的左孩子,父亲是祖父的左孩子(Left-Left),处理思路:a.将祖父节点右旋;b.交换父节点和祖父节点的颜色
当前节点是父亲的右孩子,父亲是祖父的左孩子(Right-Left),处理思路:a.将父节点左旋,并将父节点作为当前节点; b.然后再使用Left Left情形
当前节点是父亲的右孩子,父亲是祖父的右孩子(Right-Right),处理思路:a.将祖父节点左旋;b.交换父节点和祖父节点的颜色
当前节点是父亲的左孩子,父亲是祖父的右孩子(Left-Right),处理思路:a.将父节点右旋,并将父节点作为当前节点; b.然后再使用Right Right情形
4、插入图例
通过插入12 1 9 2 0 11 7 19 4 15 18 5 14 13 10 16 6 3 8 17完成上述所有情形的展示。
1.插入12
说明:插入的节点若是根节点,则直接将其设置为黑色
2.插入1
说明:插入的节点若不是根节点,则将其设置为红色
3.插入9
4.插入2
5.插入0
6.插入11
7.插入7
8.插入19
9.插入4
10.插入15
11.插入18
12.插入5
13.插入14
14.插入13
15.插入10
16.插入16
17.插入6
18.插入3
19.插入8
20.插入17
插入的过程讲解完毕。
五、基本操作——删除
1、红黑树删除的情形
1. 从树中删除节点X(以寻找后继节点的方式进行删除)
情况①:如果X没有孩子,且如果X是红色,直接删除X;如果X是黑色,则以X为当前节点进行旋转调色,最后删掉X
情况②:如果X只有一个孩子C,交换X和C的数值,再对新X进行删除。根据红黑树特性,此时X不可能为红色,因为红色节点要么没有孩子,要么有两个黑孩子。此时以新X为当前节点进行情况①的判断
情况③:如果X有两个孩子,则从后继中找到最小节点D,交换X和D的数值,再对新X进行删除。此时以新X为当前节点进行情况①或②的判断
2. 旋转调色(N=旋转调色的当前节点[等于情况①中的X],P=N的父亲,W=N的兄弟,Nf=N的远侄子,Nn=N的近侄子)
情况1:N是根或者N是红色,则:直接将N设为黑色
情况2:N不是根且N是黑色,且W为红色,则:将W设为黑色,P设为红色,对P进行旋转(N为P的左子时进行左旋,N为P的右子时进行右旋),将情况转化为情况1、2、3、4、5
情况3:N不是根且N是黑色,且W为黑色,且W的左右子均为黑色,则:将W设为红色,将P设为当前节点进行旋转调色,将情况转化为情况1、2、3、4、5
情况4:N不是根且N是黑色,且W为黑色,且Nf为黑色,Nn为红色,则:交换W与Nn的颜色,并对W进行旋转(N为P的左子进行右旋,N为P的右子进行左旋),旋转后N的新兄弟W有一个红色WR,则转换为情况5
情况5:N不是根且N是黑色,且W为黑色,且Nf为红色,Nn为黑色,则:将W设为P的颜色,P和Nf设为黑色,并对P进行旋转(N为P的左子进行左旋,N为P的右子进行右旋),N设为根
2、插入图例
通过删除12 1 9 2 0 11 7 19 4 15 18 5 14 13 10 16 6 3 8 17完成上述所有情形的展示。
1.删除12
2.删除1
3.删除9
4.删除2
5.删除0
6.删除11
7.删除7
8.删除19
9.删除4
10.删除15
11.删除18
12.删除5
13.删除14
14.删除13
15.删除10
16.删除16
17.删除6
18.删除3
19.删除8
20.删除20
删除完毕!