• Python高级语法之:一篇文章了解yield与Generator生成器


    Python高级语法中,由一个yield关键词生成的generator生成器,是精髓中的精髓。它虽然比装饰器、魔法方法更难懂,但是它强大到我们难以想象的地步:小到简单的for loop循环,大到代替多线程做服务器的高并发处理,都可以基于yield来实现。

    理解yield:代替return的yield

    简单来说,yield是代替return的另一种方案:

    • return就像人只有一辈子,一个函数一旦return,它的生命就结束了
    • yield就像有“第二人生”、“第三人生”甚至轮回转世一样,函数不但能返回值,“重生”以后还能再接着“上辈子”的记忆继续返回值

    我的定义:yield在循环中代替return,每次循环返回一次值,而不是全部循环完了才返回值。

    yield怎么念?

    return我们念“返回xx值”,我建议:yield可以更形象的念为"呕吐出xx值“,每次呕一点。

    一般我们进行循环迭代的时候,都必须等待循环结束后才return结果。
    数量小的时候还行,但是如果循环次数上百万?上亿?我们要等多久?
    如果循环中不涉及I/O还行,但是如果涉及I/O堵塞,一个堵几秒,后边几百万个客户等着呢,银行柜台还能不能下班了?

    所以这里肯定是要并行处理的。除了传统的多线程多进程外,我们还可以选择Generator生成器,也就是由yield代替return,每次循环都返回值,而不是全部循环完了才返回结果。

    这样做的好处就是——极大的节省了内存。如果用return,那么循环中的所有数据都要不断累计到内存里直到循环结束,这个不友好。
    而yield则是一次一次的返回结果,就不会在内存里累加了。所以数据量越大,优势就越明显。

    有多明显?如果做一百万的简单数字计算,普通的for loop return会增加300MB+的内存占用!而用yield一次一次返回,增加的内存占用几乎为0MB!

    yield的位置

    既然yield不是全部循环完了再返回,而是循环中每次都返回,所以位置自然不是在for loop之后,而是在loop之中。

    先来看一般的for loop返回:

    def square(numbers):
        result = []
        for n in numbers:
            result.append( n**2 )
        return result    #在for之外
    ```
    

    再来看看yield怎么做:

    def square(numbers):
        for n in numbers:
            yield n**2    #在for之中
    ```
    

    可以看到,yield在for loop之中,且函数完全不需要写return返回。

    这时候如果你print( square([1,2,3]) )得到的就不是直接的结果,而是一个<generator object>
    如果要使用,就必须一次一次的next(...)来获取下一个值:

    >>> results = square( [1,2,3] )
    >>> next( result )
    1
    >>> next( result )
    4
    >>> next( result )
    9
    >>> next( result )
    ERROR: StopIteration
    ```
    

    这个时候更简单的做法是:

    for r in results:
        print( r )
    ```
    

    因为in这个关键词自动在后台为我们调用生成器的next(..)函数

    什么是generator生成器?
    只要我们在一个函数中用了yield关键字,函数就会返回一个<generator object>生成器对象,两者是相辅相成的。有了这个对象后,我们就可以使用一系列的操作来控制这个循环结果了,比如next(..)获取下一个迭代的结果。

    yieldgenerator的关系,简单来说就是一个起因一个结果:只要写上yield, 其所在的函数就立马变成一个<generator object>对象。

    xrange:用生成器实现的range

    Python中我们使用range()函数生成数列非常常用。而xrange()的使用方法、效果几乎一模一样,唯一不同的就是——xrange()返回的是生成器,而不是直接的结果。
    如果数据量大时,xrange()能极大的减小内存占用,带来卓越的性能提升。

    当然,几百、几千的数量级,就直接用range好了。

    多重yield

    有时候我们可能会在一个函数中、或者一个for loop中看到多个yield,这有点不太好理解。
    但其实很简单!

    一般情况下,我们写的:

    for n in [1,2,3]:
        yield n**2
    ```
    

    实际上它的本质是生成了这个东西:

    yield 1**2
    yield 2**2
    yield 3**2
    ```
    

    也就是说,不用for loop,我们自己手写一个一个的yield,效果也是一样的。

    你每次调用一次next(..),就得到一个yield后面的值。然后三个yield的第一个就会被划掉,剩两个。再调用一次,再划掉一个,就剩一个。直到一个都不剩,next(..)就返回异常。
    一旦了解这个本质,我们就能理解一个函数里写多个yield是什么意思了。

    更深入理解yield:作为暂停符的yield

    从多重yield延伸,我们可以开始更进一步了解yield到底做了些什么了。

    现在,我们不把yield看作是return的替代品了,而是把它看作是一个suspense暂停符。
    即每次程序遇到yield,都会暂停。当你调用next(..)时候,它再resume继续。

    比如我们改一下上面的程序:

    def func():
        yield 1**2
        print('Hi, Im A!')
    
    yield 2**2
    print('Hi, Im B!')
    
    yield 3**2
    print('Hi, Im C!')
    
    
    <p>然后我们调用这个小函数,来看看yield产生的实际效果是什么:</p>
    <pre><code class="py">&gt;&gt;&gt; f = func()
    &gt;&gt;&gt; f
    &lt;generator object func at 0x10d36c840&gt;
    
    &gt;&gt;&gt; next( f )
    1
    
    &gt;&gt;&gt; next( f )
    Hi, Im A!
    4
    
    &gt;&gt;&gt; next( f )
    Hi, Im B!
    9
    
    &gt;&gt;&gt; next( f )
    Hi, Im C!
    ERROR: StopIteration
    

    从这里我们可以看到:

    • 第一次调用生成器的时候,yield之后的打印没有执行。因为程序yield这里暂停了
    • 第二次调用生成器的时候,第一个yield之后的语句执行了,并且再次暂停在第二个yield
    • 第三次调用生成器的时候,卡在了第三个yield。
    • 第四次调用生成器的时候,最后一个yield以下的内容还是执行了,但是因为没有找到第四个yield,所以报错。

    所以到了这里,如果我们能理解yield作为暂停符的作用,就可以非常灵活的用起来了。

    yield fromsub-generator子生成器

    yield from是Python 3.3开始引入的新特性。
    它主要作用就是:当我需要在一个生成器函数中使用另一个生成器时,可以用yield from来简化语句。

    举例,正常情况下我们可能有这么两个生成器,第二个调用第一个:

    def gen1():
        yield 11
        yield 22
        yield 33
    
    def gen2():
        for g in gen1():
            yield g
        yield 44
        yield 55
        yield 66
    

    可以看到,我们在gen2()这个生成器中调用了gen1()的结果,并把每次获取到的结果yield转发出去,当成自己的yield出来的值

    我们把这种一个生成器中调用的另一个生成器叫做sub-generator子生成器,而这个子生成器由yield from关键字生成。

    由于sub-generator子生成器很常用,所以Python引入了新的语法来简化这个代码:yield from

    上面gen2()的代码可以简化为:

        yield from gen1()
        yield 44
        yield 55
        yield 66
    

    这样看起来是不是更"pythonic"了呢?:)

    所以只要记住:yield from只是把别人呕吐出来的值,直接当成自己的值呕吐出去。

    递归+yield能产生什么?

    一般我们只是二选一:要不然递归,要不然for循环中yield。有时候yield就可以解决递归的问题,但是有时候光用yield并不能解决,还是要用递归。
    那么怎么既用到递归,又用到yield生成器呢?

    参考:Recursion using yield

    def func(n):
        result = n**2
        yield result
        if n &lt; 100:
            yield from func( result )
    
    for x in func(100):
        print( x )
    

    上面代码的逻辑是:如果n小于100,那么每次调用next(..)的时候,都得到n的乘方。下次next,会继续对之前的结果进行乘方,直到结果超过100为止。

    我们看到代码里利用了yield from子生成器。因为yield出的值不是直接由变量来,而是由“另一个”函数得来了。

    来源:https://segmentfault.com/a/1190000018208997

  • 相关阅读:
    Angular学习笔记—创建一个angular项目
    Angular学习笔记—路由(转载)
    Angular学习笔记—HttpClient (转载)
    Angular学习笔记—Rxjs、Promise的区别
    Dubbo-admin管理平台的安装
    正则表达式
    Java NIO系列教程(五) 通道之间的数据传输
    Java NIO系列教程(三) Buffer
    Java NIO系列教程(二) Channel
    Java NIO系列教程(一) Java NIO 概述
  • 原文地址:https://www.cnblogs.com/qixidi/p/10406083.html
Copyright © 2020-2023  润新知