Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6725 Accepted Submission(s): 2251
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
本题的大致意思为给定一个数组,求其分成m个不相交子段和最大值的问题。
设Num为给定数组,n为数组中的元素总数,Status[i][j]表示前i个数在选取第i个数的前提下分成j段的最大值,其中1<=j<=i<=n && j<=m,状态转移方程为:
Status[i][j]=Max(Status[i-1][j]+Num[i],Max(Status[0][j-1]~Status[i-1][j-1])+Num[i])
乍看一下这个方程挺吓人的,因为题中n的限定范围为1~1,000,000而m得限定范围没有给出,m只要稍微大一点就会爆内存。但仔细分析后就会发现Status[i][j]的求解只和Status[*][j]与Status[*][j-1]有关所以本题只需要两个一维数组即可搞定状态转移。
在进行更进一步的分析还会发现其实Max(Status[0][j-1]~Status[i-1][j-1])根本不需要单独求取。在求取now_Status(保存本次状态的数组)的过程中即可对pre_Status(保存前一次状态的数组)进行同步更新。
状态dp[i][j]
有前j个数,组成i组的和的最大值。
决策: 第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000, 继续滚动数组。
View Code
时间复杂度 n^3. n<=1000000. 显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来 下次计算的时候可以用,这样时间复杂度为 n^2.
1 /* 2 状态dp[i][j]有前j个数,组成i组的和的最大值。决策: 3 第j个数,是在第包含在第i组里面,还是自己独立成组。 4 方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j 5 空间复杂度,m未知,n<=1000000, 继续滚动数组。 6 时间复杂度 n^3. n<=1000000. 显然会超时,继续优化。 7 max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。 8 我们可以在每次计算dp[i][j]的时候记录下前j个的最大值 9 用数组保存下来 下次计算的时候可以用,这样时间复杂度为 n^2. 10 */ 11 12 #include<stdio.h> 13 #include<algorithm> 14 #include<iostream> 15 using namespace std; 16 #define MAXN 1000000 17 #define INF 0x7fffffff 18 int dp[MAXN+10]; 19 int mmax[MAXN+10]; 20 int a[MAXN+10]; 21 int main() 22 { 23 int n,m; 24 int i,j,mmmax; 25 while(scanf("%d%d",&m,&n)!=EOF) 26 { 27 for(i=1;i<=n;i++) 28 { 29 scanf("%d",&a[i]); 30 mmax[i]=0; 31 dp[i]=0; 32 } 33 dp[0]=0; 34 mmax[0]=0; 35 for(i=1;i<=m;i++) 36 { 37 mmmax=-INF; 38 for(j=i;j<=n;j++) 39 { 40 dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]); 41 mmax[j-1]=mmmax; 42 mmmax=max(mmmax,dp[j]); 43 } 44 } 45 printf("%d ",mmmax); 46 47 } 48 return 0; 49 }