Children’s Queue
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8915 Accepted Submission(s): 2835
Problem Description
There
are many students in PHT School. One day, the headmaster whose name is
PigHeader wanted all students stand in a line. He prescribed that girl
can not be in single. In other words, either no girl in the queue or
more than one girl stands side by side. The case n=4 (n is the number of
children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
Input
There
are multiple cases in this problem and ended by the EOF. In each case,
there is only one integer n means the number of children
(1<=n<=1000)
Output
For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.
Sample Input
1
2
3
Sample Output
1
2
4
思路如下:
一个长度n的队列可以看成一个n - 1的队列再追加的1个小孩,这个小孩只可能是:
a.男孩,任何n - 1的合法队列追加1个男孩必然是合法的,情况数为f[n - 1];
b.女孩,在前n - 1的以女孩为末尾的队列后追加1位女孩也是合法的,我们可以转化为n - 2的队列中追加2位女孩;
一种情况是在n - 2的合法队列中追加2位女孩,情况数为f[n - 2];
但我们注意到本题的难点,可能前n - 2位以女孩为末尾的不合法队列(即单纯以1位女孩结尾),也可以追加2位女孩成为合法队列,而这种n - 2不合法队列必然是由n - 4合法队列+1男孩+1女孩的结构,即情况数为f[n - 4]。
1 #include<stdio.h> 2 int main(){ 3 int n; 4 int f[1001][101] = {0}; 5 f[0][1] = 1; 6 f[1][1] = 1; 7 f[2][1] = 2; 8 f[3][1] = 4; 9 for(int i = 4; i < 1001; ++i){ 10 for(int j = 1; j < 101; ++j){ 11 f[i][j] += f[i - 1][j] + f[i - 2][j] + f[i - 4][j]; //数组的每一位相加 12 f[i][j + 1] += f[i][j] / 10000; //超过4位的部分保存至数组下一位中 13 f[i][j] %= 10000; //每位数组只保存其中4位 14 } 15 } 16 while(scanf("%d", &n) != EOF){ 17 int k = 100; 18 while(!f[n][k--]); //排除前面为空的数组 19 printf("%d", f[n][k + 1]); //输出结果的前四位 20 for(; k > 0; --k){ 21 printf("%04d", f[n][k]); //输出其余的所有四位数字,若数字小于四位,则前面用0填充 22 } 23 printf(" "); 24 } 25 return 0; 26 }