• 机器学习sklearn(83):算法实例(40)分类(19)朴素贝叶斯(二) 不同分布下的贝叶斯(一) 高斯朴素贝叶斯GaussianNB


    1 认识高斯朴素贝叶斯

     

     

     

    1. 展示我所使用的设备以及各个库的版本

    %%cmd
    pip install watermark
    #在这里必须分开cell,魔法命令必须是一个cell的第一部分内容
    #注意load_ext这个命令只能够执行一次,再执行就会报错,要求用reload命令
    %load_ext watermark
    %watermark -a "TsaiTsai" -d -v -m -p numpy,pandas,matplotlib,scipy,sklearn
    2. 导入需要的库和数据
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.naive_bayes import GaussianNB
    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    digits = load_digits()
    X, y = digits.data, digits.target
    Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,y,test_size=0.3,random_state=420)
    3. 建模,探索建模结果 
    gnb = GaussianNB().fit(Xtrain,Ytrain) #查看分数
    acc_score = gnb.score(Xtest,Ytest)
    acc_score
    #查看预测结果
    Y_pred = gnb.predict(Xtest) #查看预测的概率结果
    prob = gnb.predict_proba(Xtest)
    prob.shape
    prob.shape #每一列对应一个标签下的概率
    prob[1,:].sum() #每一行的和都是一
    prob.sum(axis=1)
    4. 使用混淆矩阵来查看贝叶斯的分类结果
    from sklearn.metrics import confusion_matrix as CM
    CM(Ytest,Y_pred) 
    #注意,ROC曲线是不能用于多分类的。多分类状况下最佳的模型评估指标是混淆矩阵和整体的准确度

    2 探索贝叶斯:高斯朴素贝叶斯擅长的数据集

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.datasets import make_moons, make_circles, make_classification
    from sklearn.naive_bayes import GaussianNB
    h = .02
    names = ["Multinomial","Gaussian","Bernoulli","Complement"]
    classifiers = [MultinomialNB(),GaussianNB(),BernoulliNB(),ComplementNB()]
    X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                               random_state=1, n_clusters_per_class=1)
    rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)
    datasets = [make_moons(noise=0.3, random_state=0),
                make_circles(noise=0.2, factor=0.5, random_state=1),
                linearly_separable
               ]
    figure = plt.figure(figsize=(6, 9))
    i = 1
    for ds_index, ds in enumerate(datasets):
        X, y = ds
        X = StandardScaler().fit_transform(X) 
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, 
    random_state=42)
        x1_min, x1_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        x2_min, x2_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        array1,array2 = np.meshgrid(np.arange(x1_min, x1_max, 0.2),
                             np.arange(x2_min, x2_max, 0.2))
        cm = plt.cm.RdBu
        cm_bright = ListedColormap(['#FF0000', '#0000FF'])
        ax = plt.subplot(len(datasets), 2, i)
        if ds_index == 0:
            ax.set_title("Input data")
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, 
                   cmap=cm_bright,edgecolors='k')
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, 
                   cmap=cm_bright, alpha=0.6,edgecolors='k')
        ax.set_xlim(array1.min(), array1.max())
        ax.set_ylim(array2.min(), array2.max())
        ax.set_xticks(())
        ax.set_yticks(())
        i += 1
        ax = plt.subplot(len(datasets),2,i)
        clf = GaussianNB().fit(X_train, y_train)
        score = clf.score(X_test, y_test)
        
        Z = clf.predict_proba(np.c_[array1.ravel(),array2.ravel()])[:, 1]
        Z = Z.reshape(array1.shape)
        ax.contourf(array1, array2, Z, cmap=cm, alpha=.8)
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                   edgecolors='k')
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                   edgecolors='k', alpha=0.6)
        
        ax.set_xlim(array1.min(), array1.max())
        ax.set_ylim(array2.min(), array2.max())
        ax.set_xticks(())
        ax.set_yticks(())
        if ds_index == 0:
            ax.set_title("Gaussian Bayes")
       
        ax.text(array1.max() - .3, array2.min() + .3, ('{:.1f}%'.format(score*100)),
                size=15, horizontalalignment='right')
        i += 1
    plt.tight_layout()
    plt.show()

     

    3 探索贝叶斯:高斯朴素贝叶斯的拟合效果与运算速度

    1. 首先导入需要的模块和库 
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.naive_bayes import GaussianNB
    from sklearn.svm import SVC
    from sklearn.ensemble import RandomForestClassifier as RFC
    from sklearn.tree import DecisionTreeClassifier as DTC
    from sklearn.linear_model import LogisticRegression as LR
    from sklearn.datasets import load_digits
    from sklearn.model_selection import learning_curve
    from sklearn.model_selection import ShuffleSplit
    from time import time
    import datetime
    2. 定义绘制学习曲线的函数
    def plot_learning_curve(estimator,title, X, y, 
                            ax, #选择子图
                            ylim=None, #设置纵坐标的取值范围
                            cv=None, #交叉验证
                            n_jobs=None #设定索要使用的线程
                           ):
        train_sizes, train_scores, test_scores = learning_curve(estimator, X, y
                                                               ,cv=cv,n_jobs=n_jobs)    
        ax.set_title(title)
        if ylim is not None:
            ax.set_ylim(*ylim)
        ax.set_xlabel("Training examples")
        ax.set_ylabel("Score")
        ax.grid() #显示网格作为背景,不是必须
        ax.plot(train_sizes, np.mean(train_scores, axis=1), 'o-'
               , color="r",label="Training score")
        ax.plot(train_sizes, np.mean(test_scores, axis=1), 'o-'
               , color="g",label="Test score")
        ax.legend(loc="best")
        return ax
    3. 导入数据,定义循环
    digits = load_digits()
    X, y = digits.data, digits.target
    X.shape
    X #是一个稀疏矩阵
    title = ["Naive Bayes","DecisionTree","SVM, RBF kernel","RandomForest","Logistic"] 
    model = [GaussianNB(),DTC(),SVC(gamma=0.001)
             ,RFC(n_estimators=50),LR(C=.1,solver="lbfgs")]
    cv = ShuffleSplit(n_splits=50, test_size=0.2, random_state=0)
    4. 进入循环,绘制学习曲线
    fig, axes = plt.subplots(1,5,figsize=(30,6))
    for ind,title_,estimator in zip(range(len(title)),title,model):
        times = time()
        plot_learning_curve(estimator, title_, X, y,
                            ax=axes[ind], ylim = [0.7, 1.05],n_jobs=4, cv=cv)
        print("{}:{}".format(title_,datetime.datetime.fromtimestamp(time()-
    times).strftime("%M:%S:%f")))
    plt.show()

     

     

  • 相关阅读:
    从无到有制作Deb包的一个实例
    Redis内存存储结构分析
    岳麓实践论
    金砖四国(巴西、俄罗斯、印度和中国)
    用LLVM开发新语言
    QQ云输入法
    http://baike.baidu.com/view/1926473.htm
    21世纪商业评论
    update ubuntu to 11.10
    gnu make 中文手册教程pdf
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14967411.html
Copyright © 2020-2023  润新知