Java 类名:com.alibaba.alink.operator.batch.evaluation.EvalMultiClassBatchOp
Python 类名:EvalMultiClassBatchOp
功能介绍
多分类评估是对多分类算法的预测结果进行效果评估。
支持Roc曲线,LiftChart曲线,K-S曲线,Recall-Precision曲线绘制。
流式的实验支持累计统计和窗口统计,除却上述四条曲线外,还给出Auc/Kappa/Accuracy/Logloss随时间的变化曲线。
给出整体的评估指标包括:AUC、K-S、PRC, 不同阈值下的Precision、Recall、F-Measure、Sensitivity、Accuracy、Specificity和Kappa。
混淆矩阵
F-Measure
F1=dfrac{2TP}{2TP+FP+FN}=dfrac{2cdot Precision cdot Recall}{Precision+Recall}
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
labelCol |
标签列名 |
输入表中的标签列名 |
String |
✓ |
|
predictionCol |
预测结果列名 |
预测结果列名 |
String |
||
predictionDetailCol |
预测详细信息列名 |
预测详细信息列名 |
String |
代码示例
Python 代码
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["prefix1", "{"prefix1": 0.9, "prefix0": 0.1}"], ["prefix1", "{"prefix1": 0.8, "prefix0": 0.2}"], ["prefix1", "{"prefix1": 0.7, "prefix0": 0.3}"], ["prefix0", "{"prefix1": 0.75, "prefix0": 0.25}"], ["prefix0", "{"prefix1": 0.6, "prefix0": 0.4}"]]) inOp = BatchOperator.fromDataframe(df, schemaStr='label string, detailInput string') metrics = EvalMultiClassBatchOp().setLabelCol("label").setPredictionDetailCol("detailInput").linkFrom(inOp).collectMetrics() print("Prefix0 accuracy:", metrics.getAccuracy("prefix0")) print("Prefix1 recall:", metrics.getRecall("prefix1")) print("Macro Precision:", metrics.getMacroPrecision()) print("Micro Recall:", metrics.getMicroRecall()) print("Weighted Sensitivity:", metrics.getWeightedSensitivity())
Java 代码
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.evaluation.EvalMultiClassBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.common.evaluation.MultiClassMetrics; import org.junit.Test; import java.util.Arrays; import java.util.List; public class EvalMultiClassBatchOpTest { @Test public void testEvalMultiClassBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("prefix1", "{"prefix1": 0.9, "prefix0": 0.1}"), Row.of("prefix1", "{"prefix1": 0.8, "prefix0": 0.2}"), Row.of("prefix1", "{"prefix1": 0.7, "prefix0": 0.3}"), Row.of("prefix0", "{"prefix1": 0.75, "prefix0": 0.25}") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "label string, detailInput string"); MultiClassMetrics metrics = new EvalMultiClassBatchOp().setLabelCol("label").setPredictionDetailCol( "detailInput").linkFrom(inOp).collectMetrics(); System.out.println("Prefix0 accuracy:" + metrics.getAccuracy("prefix0")); System.out.println("Prefix1 recall:" + metrics.getRecall("prefix1")); System.out.println("Macro Precision:" + metrics.getMacroPrecision()); System.out.println("Micro Recall:" + metrics.getMicroRecall()); System.out.println("Weighted Sensitivity:" + metrics.getWeightedSensitivity()); } }
运行结果
Prefix0 accuracy: 0.6 Prefix1 recall: 1.0 Macro Precision: 0.8 Micro Recall: 0.6 Weighted Sensitivity: 0.6