归一化批预测 (MinMaxScalerPredictBatchOp)
Java 类名:com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp
Python 类名:MinMaxScalerPredictBatchOp
功能介绍
数据归一化预测组件
将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。
minValue和maxValue由用户指定,默认为0和1。
需要加载由MinMaxScalerTrainBatchOp训练的模型
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
outputCols |
输出结果列列名数组 |
输出结果列列名数组,可选,默认null |
String[] |
null |
|
numThreads |
组件多线程线程个数 |
组件多线程线程个数 |
Integer |
1 |
|
modelStreamFilePath |
模型流的文件路径 |
模型流的文件路径 |
String |
null |
|
modelStreamScanInterval |
扫描模型路径的时间间隔 |
描模型路径的时间间隔,单位秒 |
Integer |
10 |
|
modelStreamStartTime |
模型流的起始时间 |
模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) |
String |
null |
代码示例
Python 代码
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long') # train trainOp = MinMaxScalerTrainBatchOp() .setSelectedCols(selectedColNames) trainOp.linkFrom(inOp) # batch predict predictOp = MinMaxScalerPredictBatchOp() predictOp.linkFrom(trainOp, inOp).print()
Java 代码
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class MinMaxScalerPredictBatchOpTest { @Test public void testMinMaxScalerPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new MinMaxScalerTrainBatchOp() .setSelectedCols(selectedColNames); trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new MinMaxScalerPredictBatchOp(); predictOp.linkFrom(trainOp, inOp).print(); } }
运行结果
col1 |
col2 |
col3 |
a |
0.5473 |
1.0000 |
b |
0.4851 |
0.0808 |
c |
0.9965 |
0.0000 |
d |
0.0000 |
1.0000 |
a |
0.5045 |
0.0000 |
b |
0.4866 |
0.0808 |
c |
1.0000 |
0.0000 |
归一化训练 (MinMaxScalerTrainBatchOp)
Java 类名:com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp
Python 类名:MinMaxScalerTrainBatchOp
功能介绍
数据归一化组件
将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。
minValue和maxValue由用户指定,默认为0和1。
生成的最大值最小值归一化模型在归一化预处理组件中使用。
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
selectedCols |
选择的列名 |
计算列对应的列名列表 |
String[] |
✓ |
|
max |
归一化的上界 |
归一化的上界 |
Double |
1.0 |
|
min |
归一化的下界 |
归一化的下界 |
Double |
0.0 |
代码示例
Python 代码
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long') # train trainOp = MinMaxScalerTrainBatchOp() .setSelectedCols(selectedColNames) trainOp.linkFrom(inOp) # batch predict predictOp = MinMaxScalerPredictBatchOp() predictOp.linkFrom(trainOp, inOp).print()
Java 代码
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class MinMaxScalerTrainBatchOpTest { @Test public void testMinMaxScalerTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new MinMaxScalerTrainBatchOp() .setSelectedCols(selectedColNames); trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new MinMaxScalerPredictBatchOp(); predictOp.linkFrom(trainOp, inOp).print(); } }
运行结果
col1 |
col2 |
col3 |
a |
0.5473 |
1.0000 |
b |
0.4851 |
0.0808 |
c |
0.9965 |
0.0000 |
d |
0.0000 |
1.0000 |
a |
0.5045 |
0.0000 |
b |
0.4866 |
0.0808 |
c |
1.0000 |
0.0000 |