Java 类名:com.alibaba.alink.operator.batch.dataproc.ImputerTrainBatchOp
Python 类名:ImputerTrainBatchOp
功能介绍
数据缺失值模型训练
缺失值填充支持4种策略,最大值、最小值、均值、指定数值。当策略为指定数值时,需要设置参数fillValue。
模型生成后处理其他数据参考ImputerPredictBatchOp
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
selectedCols |
选择的列名 |
计算列对应的列名列表 |
String[] |
✓ |
|
fillValue |
填充缺失值 |
自定义的填充值。当strategy为value时,读取fillValue的值 |
String |
null |
|
strategy |
缺失值填充规则 |
缺失值填充的规则,支持mean,max,min或者value。选择value时,需要读取fillValue的值 |
String |
"MEAN" |
代码示例
Python 代码
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1], [None, None, None] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double') # train trainOp = ImputerTrainBatchOp() .setSelectedCols(selectedColNames) model = trainOp.linkFrom(inOp) # batch predict predictOp = ImputerPredictBatchOp() predictOp.linkFrom(model, inOp).print() # stream predict sinOp = StreamOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double') predictStreamOp = ImputerPredictStreamOp(model) predictStreamOp.linkFrom(sinOp).print() StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.ImputerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.ImputerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.ImputerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class ImputerTrainBatchOpTest { @Test public void testImputerTrainBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1), Row.of(null, null, null) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df_data, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new ImputerTrainBatchOp() .setSelectedCols(selectedColNames); BatchOperator model = trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new ImputerPredictBatchOp(); predictOp.linkFrom(model, inOp).print(); StreamOperator <?> sinOp = new MemSourceStreamOp(df_data, "col1 string, col2 double, col3 int"); StreamOperator <?> predictStreamOp = new ImputerPredictStreamOp(model); predictStreamOp.linkFrom(sinOp).print(); StreamOperator.execute(); } }
运行结果
col1 |
col2 |
col3 |
a |
10.000000 |
100 |
b |
-2.500000 |
9 |
c |
100.200000 |
1 |
d |
-99.900000 |
100 |
a |
1.400000 |
1 |
b |
-2.200000 |
9 |
c |
100.900000 |
1 |
null |
15.414286 |
31 |