• Flink实战(九十九):双流join(二)双流 Join 的3种操作示例


    来源:https://mp.weixin.qq.com/s/vTAkUrPfO4DW1qOzJ-Zs4A

    在数据库中的静态表上做 OLAP 分析时,两表 join 是非常常见的操作。同理,在流式处理作业中,有时也需要在两条流上做 join 以获得更丰富的信息。Flink DataStream API 为用户提供了3个算子来实现双流 join,分别是:

    • join()
    • coGroup()
    • intervalJoin()

    本文举例说明它们的使用方法,顺便聊聊比较特殊的 interval join 的原理。

    1 准备数据

    从 Kafka 分别接入点击流和订单流,并转化为 POJO。

    DataStream<String> clickSourceStream = env
      .addSource(new FlinkKafkaConsumer011<>(
        "ods_analytics_access_log",
        new SimpleStringSchema(),
        kafkaProps
      ).setStartFromLatest());
    DataStream<String> orderSourceStream = env
      .addSource(new FlinkKafkaConsumer011<>(
        "ods_ms_order_done",
        new SimpleStringSchema(),
        kafkaProps
      ).setStartFromLatest());
    
    DataStream<AnalyticsAccessLogRecord> clickRecordStream = clickSourceStream
      .map(message -> JSON.parseObject(message, AnalyticsAccessLogRecord.class));
    DataStream<OrderDoneLogRecord> orderRecordStream = orderSourceStream
      .map(message -> JSON.parseObject(message, OrderDoneLogRecord.class));

    2 join()

    join() 算子提供的语义为"Window join",即按照指定字段和(滚动/滑动/会话)窗口进行 inner join,支持处理时间和事件时间两种时间特征。
    以下示例以10秒滚动窗口,将两个流通过商品 ID 关联,取得订单流中的售价相关字段。

    clickRecordStream
      .join(orderRecordStream)
      .where(record -> record.getMerchandiseId())
      .equalTo(record -> record.getMerchandiseId())
      .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
      .apply(new JoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() {
        @Override
        public String join(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord) throws Exception {
          return StringUtils.join(Arrays.asList(
            accessRecord.getMerchandiseId(),
            orderRecord.getPrice(),
            orderRecord.getCouponMoney(),
            orderRecord.getRebateAmount()
          ), '	');
        }
      })
      .print().setParallelism(1);

    简单易用。

    3 coGroup()

    只有 inner join 肯定还不够,如何实现 left/right outer join 呢?答案就是利用 coGroup() 算子。它的调用方式类似于 join() 算子,也需要开窗,但是 CoGroupFunction 比 JoinFunction 更加灵活,可以按照用户指定的逻辑匹配左流和/或右流的数据并输出。
    以下的例子就实现了点击流 left join 订单流的功能,是很朴素的 nested loop join 思想(二重循环)。

    clickRecordStream
      .coGroup(orderRecordStream)
      .where(record -> record.getMerchandiseId())
      .equalTo(record -> record.getMerchandiseId())
      .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
      .apply(new CoGroupFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, Tuple2<String, Long>>() {
        @Override
        public void coGroup(Iterable<AnalyticsAccessLogRecord> accessRecords, Iterable<OrderDoneLogRecord> orderRecords, Collector<Tuple2<String, Long>> collector) throws Exception {
          for (AnalyticsAccessLogRecord accessRecord : accessRecords) {
            boolean isMatched = false;
            for (OrderDoneLogRecord orderRecord : orderRecords) {
              // 右流中有对应的记录
              collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), orderRecord.getPrice()));
              isMatched = true;
            }
            if (!isMatched) {
              // 右流中没有对应的记录
              collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), null));
            }
          }
        }
      })
      .print().setParallelism(1);

    4 intervalJoin()

    join() 和 coGroup() 都是基于窗口做关联的。但是在某些情况下,两条流的数据步调未必一致。例如,订单流的数据有可能在点击流的购买动作发生之后很久才被写入,如果用窗口来圈定,很容易 join 不上。所以 Flink 又提供了"Interval join"的语义,按照指定字段以及右流相对左流偏移的时间区间进行关联,即:

    right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]

     interval join 也是 inner join,虽然不需要开窗,但是需要用户指定偏移区间的上下界,并且只支持事件时间。
    示例代码如下。注意在运行之前,需要分别在两个流上应用 assignTimestampsAndWatermarks() 方法获取事件时间戳和水印。

    clickRecordStream
      .keyBy(record -> record.getMerchandiseId())
      .intervalJoin(orderRecordStream.keyBy(record -> record.getMerchandiseId()))
      .between(Time.seconds(-30), Time.seconds(30))
      .process(new ProcessJoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() {
        @Override
        public void processElement(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord, Context context, Collector<String> collector) throws Exception {
          collector.collect(StringUtils.join(Arrays.asList(
            accessRecord.getMerchandiseId(),
            orderRecord.getPrice(),
            orderRecord.getCouponMoney(),
            orderRecord.getRebateAmount()
          ), '	'));
        }
      })
      .print().setParallelism(1);

    由上可见,interval join 与 window join 不同,是两个 KeyedStream 之上的操作,并且需要调用 between() 方法指定偏移区间的上下界。如果想令上下界是开区间,可以调用 upperBoundExclusive()/lowerBoundExclusive() 方法。

    interval join 的实现原理

    以下是 KeyedStream.process(ProcessJoinFunction) 方法调用的重载方法的逻辑。

    public <OUT> SingleOutputStreamOperator<OUT> process(
            ProcessJoinFunction<IN1, IN2, OUT> processJoinFunction,
            TypeInformation<OUT> outputType) {
        Preconditions.checkNotNull(processJoinFunction);
        Preconditions.checkNotNull(outputType);
        final ProcessJoinFunction<IN1, IN2, OUT> cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);
        final IntervalJoinOperator<KEY, IN1, IN2, OUT> operator =
            new IntervalJoinOperator<>(
                lowerBound,
                upperBound,
                lowerBoundInclusive,
                upperBoundInclusive,
                left.getType().createSerializer(left.getExecutionConfig()),
                right.getType().createSerializer(right.getExecutionConfig()),
                cleanedUdf
            );
        return left
            .connect(right)
            .keyBy(keySelector1, keySelector2)
            .transform("Interval Join", outputType, operator);
    }

    可见是先对两条流执行 connect() 和 keyBy() 操作,然后利用 IntervalJoinOperator 算子进行转换。在 IntervalJoinOperator 中,会利用两个 MapState 分别缓存左流和右流的数据。

    private transient MapState<Long, List<BufferEntry<T1>>> leftBuffer;
    private transient MapState<Long, List<BufferEntry<T2>>> rightBuffer;
    
    @Override
    public void initializeState(StateInitializationContext context) throws Exception {
        super.initializeState(context);
        this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
            LEFT_BUFFER,
            LongSerializer.INSTANCE,
            new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))
        ));
        this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
            RIGHT_BUFFER,
            LongSerializer.INSTANCE,
            new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer))
        ));
    }

    其中 Long 表示事件时间戳,List<BufferEntry<T>> 表示该时刻到来的数据记录。当左流和右流有数据到达时,会分别调用 processElement1() 和 processElement2() 方法,它们都调用了 processElement() 方法,代码如下。

    @Override
    public void processElement1(StreamRecord<T1> record) throws Exception {
        processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
    }
    
    @Override
    public void processElement2(StreamRecord<T2> record) throws Exception {
        processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
    }
    
    @SuppressWarnings("unchecked")
    private <THIS, OTHER> void processElement(
            final StreamRecord<THIS> record,
            final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,
            final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,
            final long relativeLowerBound,
            final long relativeUpperBound,
            final boolean isLeft) throws Exception {
        final THIS ourValue = record.getValue();
        final long ourTimestamp = record.getTimestamp();
        if (ourTimestamp == Long.MIN_VALUE) {
            throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +
                    "interval stream joins need to have timestamps meaningful timestamps.");
        }
        if (isLate(ourTimestamp)) {
            return;
        }
        addToBuffer(ourBuffer, ourValue, ourTimestamp);
        for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {
            final long timestamp  = bucket.getKey();
            if (timestamp < ourTimestamp + relativeLowerBound ||
                    timestamp > ourTimestamp + relativeUpperBound) {
                continue;
            }
            for (BufferEntry<OTHER> entry: bucket.getValue()) {
                if (isLeft) {
                    collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
                } else {
                    collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
                }
            }
        }
        long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
        if (isLeft) {
            internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
        } else {
            internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
        }
    }

    这段代码的思路是:

      1. 取得当前流 StreamRecord 的时间戳,调用 isLate() 方法判断它是否是迟到数据(即时间戳小于当前水印值),如是则丢弃。
      2. 调用 addToBuffer() 方法,将时间戳和数据一起插入当前流对应的 MapState。
      3. 遍历另外一个流的 MapState,如果数据满足前述的时间区间条件,则调用 collect() 方法将该条数据投递给用户定义的 ProcessJoinFunction 进行处理。collect() 方法的代码如下,注意结果对应的时间戳是左右流时间戳里较大的那个。
    private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception {
        final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp);
        collector.setAbsoluteTimestamp(resultTimestamp);
        context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp);
        userFunction.processElement(left, right, context, collector);
    }


                     4 调用 TimerService.registerEventTimeTimer() 注册时间戳为 timestamp + relativeUpperBound 的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的 namespace 是不同的,具体逻辑则位于 onEventTime() 方法中。

    @Override
    public void onEventTime(InternalTimer<K, String> timer) throws Exception {
        long timerTimestamp = timer.getTimestamp();
        String namespace = timer.getNamespace();
        logger.trace("onEventTime @ {}", timerTimestamp);
        switch (namespace) {
            case CLEANUP_NAMESPACE_LEFT: {
                long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;
                logger.trace("Removing from left buffer @ {}", timestamp);
                leftBuffer.remove(timestamp);
                break;
            }
            case CLEANUP_NAMESPACE_RIGHT: {
                long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;
                logger.trace("Removing from right buffer @ {}", timestamp);
                rightBuffer.remove(timestamp);
                break;
            }
            default:
                throw new RuntimeException("Invalid namespace " + namespace);
        }
    }

    本文转载自简书,作者:LittleMagic
    原文链接:https://www.jianshu.com/p/45ec888332df

  • 相关阅读:
    dataGridView不选中第一行第一列的办法!
    C#唯一随机数 和 PadLeft、PadRight 补足位数
    SSRS 数值和日期格式
    Oracle SQL*Loader
    找不到请求的 .Net Framework Data Provider。可能没有安装
    ORA00837: Specified value of MEMORY_TARGET greater than MEMORY_MAX_TARGET
    oracle临时表空间 ORA01652:无法通过16(在表空间XXX中)扩展 temp 字段
    ORACLE恢复删除表或表记录
    Spring.Net Resource handler for the 'web' protocol is not defined.
    ASP.NET MVC ueditor图片上传失败问题
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14086528.html
Copyright © 2020-2023  润新知