• 李航统计学习方法(第二版)基本概念(三):统计学习方法三要素


    1.简介

    统计学习方法都是由模型、策略和算法构成的

    2.模型

    在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。

    模型的假设空间包含所有可能的条件概率分布或决策函数。

    2.1 决策函数模型

     

    2.2 条件概率

     决策函数表示的模型为非概率模型,由条件概率表示的模型为概率模型

    3 学习策略

    考虑的是按照什么样的准则学习或选择最优的模型。

    3.1 损失函数

    损失函数度量模型一次预测的好坏

     3.1.1 0-1损失函数

     3.1.2 平方损失函数

     3.1.3 绝对损失函数

     3.1.4 对数损失函数

    3.2 风险函数

    风险函数度量平均意义下模型预测的好坏。

    3.2.1 风险函数(期望损失):损失函数的期望

    3.2.2 经验风险(经验损失):

     3.2.3 总结

    期望风险是模型关于联合分布的期望损失,经验风险是模型关于训练样本集的平均损失。

    3.3 经验风险最小化与结构风险最小化

    3.3.1 经验风险最小化

    经验风险最小化(empirical risk minimization ERM)的策I咯认为,经验风险最小的模型是最优的模型。

    3.3.2 结构风险最小化

        结构风险最小化(structural risk minimization,SRM)是为了防止过拟合而提出来的策略。结构风险最小化等价于正则化(regularization) 结构风险在经验风险上加上表示模型复杂度的正则化项(regularizes)或罚项(penalty term )。

     结构风险定义

     

     结构风险最小化策略

    4 算法

    算法是指学习模型的具体计算方法。

    随机梯度下降

  • 相关阅读:
    ASP.Net User Controls as Static or Movable PopUps
    处理WinForm多线程程序时的陷阱(摘自网络)
    《颤抖吧,无证程序员们》只为娱乐
    Javascript和CSS浏览器兼容总结
    收藏的一个c#通讯编程的帖子很全
    WEB开发人员常用速查手册
    批量修改文件名称( 收藏的一个连接)
    SQL server常用操作
    开源网站大收藏
    pragma comment的使用
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/12810928.html
Copyright © 2020-2023  润新知