• 数据可视化基础专题(十三):Matplotlib 基础(五)常用图表(三)环形图、热力图、直方图


    环形图

    环形图其实是另一种饼图,使用的还是上面的 pie() 这个方法,这里只需要设置一下参数 wedgeprops 即可。

    例子一:

    import matplotlib.pyplot as plt
    
    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif']=['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    
    # 数据
    edu = [0.2515,0.3724,0.3336,0.0368,0.0057]
    labels = ['中专','大专','本科','硕士','其他']
    
    # 让本科学历离圆心远一点
    explode = [0,0,0.1,0,0]
    
    # 将横、纵坐标轴标准化处理,保证饼图是一个正圆,否则为椭圆
    plt.axes(aspect='equal')
    
    # 自定义颜色
    colors=['#9999ff','#ff9999','#7777aa','#2442aa','#dd5555'] # 自定义颜色
    
    # 绘制饼图
    plt.pie(x=edu,  # 绘图数据
        explode = explode,  # 突出显示大专人群
        labels = labels,  # 添加教育水平标签
        colors = colors,  # 设置饼图的自定义填充色
        autopct = '%.1f%%',  # 设置百分比的格式,这里保留一位小数
        wedgeprops = {'width': 0.3, 'edgecolor':'green'}
        )
    
    # 添加图标题
    plt.title('xxx 公司员工教育水平分布')
    
    # 保存图形
    plt.savefig('pie_demo1.png')

    这个示例仅仅在前面示例的基础上增加了一个参数 wedgeprops 的设置,我们看下结果:

    热力图

    plt.imshow(x, cmap)
    import numpy as np
    import matplotlib.pyplot as plt
    
    x = np.random.rand(10, 10)
    plt.imshow(x, cmap=plt.cm.hot)
    
    # 显示右边颜色条
    plt.colorbar()
    
    plt.savefig('imshow_demo.png')

    例子二

    import numpy as np
    import matplotlib.cm as cm
    import matplotlib.pyplot as plt
    import matplotlib.cbook as cbook
    from matplotlib.path import Path
    from matplotlib.patches import PathPatch
    delta = 0.025
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2
    
    fig, ax = plt.subplots()
    im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn,
                   origin='lower', extent=[-3, 3, -3, 3],
                   vmax=abs(Z).max(), vmin=-abs(Z).max())
    
    plt.show()

     例子3

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    def func3(x, y):
        return (1 - x / 2 + x**5 + y**3) * np.exp(-(x**2 + y**2))
    
    
    # make these smaller to increase the resolution
    dx, dy = 0.05, 0.05
    
    x = np.arange(-3.0, 3.0, dx)
    y = np.arange(-3.0, 3.0, dy)
    X, Y = np.meshgrid(x, y)
    
    # when layering multiple images, the images need to have the same
    # extent.  This does not mean they need to have the same shape, but
    # they both need to render to the same coordinate system determined by
    # xmin, xmax, ymin, ymax.  Note if you use different interpolations
    # for the images their apparent extent could be different due to
    # interpolation edge effects
    
    extent = np.min(x), np.max(x), np.min(y), np.max(y)
    fig = plt.figure(frameon=False)
    
    Z1 = np.add.outer(range(8), range(8)) % 2  # chessboard
    im1 = plt.imshow(Z1, cmap=plt.cm.gray, interpolation='nearest',
                     extent=extent)
    
    Z2 = func3(X, Y)
    
    im2 = plt.imshow(Z2, cmap=plt.cm.viridis, alpha=.9, interpolation='bilinear',
                     extent=extent)
    
    plt.show()

    直方图

    例子1

    import matplotlib.pyplot as plt
    import numpy as np
    from matplotlib import colors
    from matplotlib.ticker import PercentFormatter
    
    # Fixing random state for reproducibility
    np.random.seed(19680801)
    N_points = 100000
    n_bins = 20
    
    # Generate a normal distribution, center at x=0 and y=5
    x = np.random.randn(N_points)
    y = .4 * x + np.random.randn(100000) + 5
    
    fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True)
    
    # We can set the number of bins with the `bins` kwarg
    axs[0].hist(x, bins=n_bins)
    axs[1].hist(y, bins=n_bins)

     例子2

    fig, axs = plt.subplots(1, 2, tight_layout=True)
    
    # N is the count in each bin, bins is the lower-limit of the bin
    N, bins, patches = axs[0].hist(x, bins=n_bins)
    
    # We'll color code by height, but you could use any scalar
    fracs = N / N.max()
    
    # we need to normalize the data to 0..1 for the full range of the colormap
    norm = colors.Normalize(fracs.min(), fracs.max())
    
    # Now, we'll loop through our objects and set the color of each accordingly
    for thisfrac, thispatch in zip(fracs, patches):
        color = plt.cm.viridis(norm(thisfrac))
        thispatch.set_facecolor(color)
    
    # We can also normalize our inputs by the total number of counts
    axs[1].hist(x, bins=n_bins, density=True)
    
    # Now we format the y-axis to display percentage
    axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1))

  • 相关阅读:
    装饰器和表达生成式
    函数
    字符编码
    函数基础
    列表,字典与集合
    Linux Semaphore
    tp5安装easyWeChat
    wx.request
    小程序设计规范
    小程序的概念和特点
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/12732697.html
Copyright © 2020-2023  润新知