1.正则表达式的元字符有: . * + ? ^ $ {} [ ]
. 匹配除换行符以外的任意字符
转义字符,使后一个字符改变原来的意思
* 匹配前面字符0或多次
+ 匹配前面字符1或多次
?匹配一个字符0或多次
^ 匹配字符串开头
$ 匹配字符串结尾
{} {m}匹配前一个字符m次,{m,n}匹配前一个字符m至n次,若省略n,则匹配m至无限次
[] 字符集。对应的位置可以是字符集中任意字符。字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c].[^abc]表示取反,即非abc.
所有特殊字符在字符集中都失去其原有的特殊含义,用反斜杠转义恢复特殊字符的特殊含义
() 被括起来的表达式将作为分组,从表达式左边开始没遇到一个分组的左括号“(”,编号+1.
分组表达式作为一个整体,可以后接数量词。表达式中的|仅在该组中有效。
这里需要强调一下反斜杠的作用:
反斜杠后面跟元字符去除特殊功能(即将特殊字符转义成普通字符)
反斜杠后面跟普通字符实现特殊功能 (即预定义字符)
引用序号对应的字组所匹配的字符串
a=re.search(r'(tina)(fei)haha2','tinafeihahafei tinafeihahatina').group() print(a) 结果: tinafeihahafei
2.预定义字符集:
d: 表示数字0-9
D:非数字
s:匹配任何空白字符[<空格> fv]
S:非空的字符
w:匹配包括下划线的任何字符[a-zA-Z0-9_]
W:匹配非字母字符,即匹配特殊字符
A:匹配字符开头,同^
z:匹配字符结尾,同$
:匹配单词边界匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
B:和相反
这里需要强调一下的单词边界的理解: w = re.findall('tina','tian tinaaaa') print(w) s = re.findall(r'tina','tian tinaaaa') print(s) v = re.findall(r'tina','tian#tinaaaa') print(v) a = re.findall(r'tina','tian#tina@aaa') print(a) 执行结果如下: [] ['tina'] ['tina'] ['tina']
三.re模块中常用功能函数
1.compile()
编译正则表达式模式,返回一个对象的模式。(可以把那些常用的正则表达式编译成正则表达式对象,这样可以提高一点效率。)
格式:
re.compile(pattern,flags=0)
pattern: 编译时用的表达式字符串。
flags 编译标志位,用于修改正则表达式的匹配方式,如:是否区分大小写,多行匹配等。常用的flags有:
标志 |
含义
|
re.S(DOTALL)
|
使.匹配包括换行在内的所有字符 |
re.I(IGNORECASE)
|
使匹配对大小写不敏感
|
re.L(LOCALE)
|
做本地化识别(locale-aware)匹配,法语等
|
re.M(MULTILINE)
|
多行匹配,影响^和$
|
re.X(VERBOSE)
|
该标志通过给予更灵活的格式以便将正则表达式写得更易于理解
|
re.U
|
根据Unicode字符集解析字符,这个标志影响w,W,,B
|
import re tt = "Tina is a good girl, she is cool, clever, and so on..." rr = re.compile(r'w*oow*') print(rr.findall(tt)) #查找所有包含'oo'的单词 执行结果如下: ['good', 'cool']
2、match()
决定RE是否在字符串刚开始的位置匹配。//注:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'
格式:
re.match(pattern, string, flags=0)
print(re.match('com','comwww.runcomoob').group()) print(re.match('com','Comwww.runcomoob',re.I).group()) 执行结果如下: com com
3、search()
格式:
re.search(pattern, string, flags=0)
re.search函数会在字符串内查找模式匹配,只要找到第一个匹配然后返回,如果字符串没有匹配,则返回None
print(re.search('dcom','www.4comrunoob.5com').group()) 执行结果如下: 4com
*注:match和search一旦匹配成功,就是一个match object对象,而match object对象有以下方法:
- group() 返回被 RE 匹配的字符串
- start() 返回匹配开始的位置
- end() 返回匹配结束的位置
- span() 返回一个元组包含匹配 (开始,结束) 的位置
- group() 返回re整体匹配的字符串,可以一次输入多个组号,对应组号匹配的字符串。
a. group()返回re整体匹配的字符串,
b. group (n,m) 返回组号为n,m所匹配的字符串,如果组号不存在,则返回indexError异常
c.groups()groups() 方法返回一个包含正则表达式中所有小组字符串的元组,从 1 到所含的小组号,通常groups()不需要参数,返回一个元组,元组中的元就是正则表达式中定义的组。
import re a = "123abc456" print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(0)) #123abc456,返回整体 print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(1)) #123 print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(2)) #abc print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(3)) #456 ###group(1) 列出第一个括号匹配部分,group(2) 列出第二个括号匹配部分,group(3) 列出第三个括号匹配部分。###
4、findall()
re.findall遍历匹配,可以获取字符串中所有匹配的字符串,返回一个列表。
格式:
re.findall(pattern, string, flags=0)
p = re.compile(r'd+') print(p.findall('o1n2m3k4')) 执行结果如下: ['1', '2', '3', '4']
import re tt = "Tina is a good girl, she is cool, clever, and so on..." rr = re.compile(r'w*oow*') print(rr.findall(tt)) print(re.findall(r'(w)*oo(w)',tt))#()表示子表达式 执行结果如下: ['good', 'cool'] [('g', 'd'), ('c', 'l')]
5、finditer()
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。找到 RE 匹配的所有子串,并把它们作为一个迭代器返回。
格式:
re.finditer(pattern, string, flags=0)
iter = re.finditer(r'd+','12 drumm44ers drumming, 11 ... 10 ...') for i in iter: print(i) print(i.group()) print(i.span()) 执行结果如下: <_sre.SRE_Match object; span=(0, 2), match='12'> 12 (0, 2) <_sre.SRE_Match object; span=(8, 10), match='44'> 44 (8, 10) <_sre.SRE_Match object; span=(24, 26), match='11'> 11 (24, 26) <_sre.SRE_Match object; span=(31, 33), match='10'> 10 (31, 33)
6、split()
按照能够匹配的子串将string分割后返回列表。
可以使用re.split来分割字符串,如:re.split(r's+', text);将字符串按空格分割成一个单词列表。
格式:
re.split(pattern, string[, maxsplit])
maxsplit用于指定最大分割次数,不指定将全部分割
print(re.split('d+','one1two2three3four4five5')) 执行结果如下: ['one', 'two', 'three', 'four', 'five', '']
print(re.split('d+','one1two2three3four4five5')) 执行结果如下: ['one', 'two', 'three', 'four', 'five', '']