• Spark学习之路 (四)Spark的广播变量和累加器


    一、概述

    在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本。这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序。通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变(broadcast variable)和累加器(accumulator)

    二、广播变量broadcast variable

    2.1 为什么要将变量定义成广播变量?

    如果我们要在分布式计算里面分发大对象,例如:字典,集合,黑白名单等,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么知识每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

    2.2 广播变量图解

    错误的,不使用广播变量

    正确的,使用广播变量的情况

    2.3 如何定义一个广播变量?

    val a = 3
    val broadcast = sc.broadcast(a)

    2.4 如何还原一个广播变量?

    val c = broadcast.value

    2.5 定义广播变量需要的注意点?

    变量一旦被定义为一个广播变量,那么这个变量只能读,不能修改

    2.6 注意事项

    1、能不能将一个RDD使用广播变量广播出去?

           不能,因为RDD是不存储数据的。可以将RDD的结果广播出去。

    2、 广播变量只能在Driver端定义,不能在Executor端定义。

    3、 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量的值。

    4、如果executor端用到了Driver的变量,如果不使用广播变量在Executor有多少task就有多少Driver端的变量副本。

    5、如果Executor端用到了Driver的变量,如果使用广播变量在每个Executor中只有一份Driver端的变量副本。

    三、累加器 

    3.1 为什么要将一个变量定义为一个累加器?

    在spark应用程序中,我们经常会有这样的需求,如异常监控,调试,记录符合某特性的数据的数目,这种需求都需要用到计数器,如果一个变量不被声明为一个累加器,那么它将在被改变时不会再driver端进行全局汇总,即在分布式运行时每个task运行的只是原始变量的一个副本,并不能改变原始变量的值,但是当这个变量被声明为累加器后,该变量就会有分布式计数的功能。

    3.2 图解累加器

    错误的图解

    正确的图解

    3.3 如何定义一个累加器?

    val a = sc.accumulator(0)

    3.4 如何还原一个累加器?

    val b = a.value

    3.5 注意事项

    1、 累加器在Driver端定义赋初始值,累加器只能在Driver端读取最后的值,在Excutor端更新。

    2、累加器不是一个调优的操作,因为如果不这样做,结果是错的

  • 相关阅读:
    this指向
    this指向
    this指向
    this指向
    a=b=c 连等赋值的分析
    测试应用documentFragment 和 直接操作dom 的区别
    javascript 基本数据类型、引用数据类型
    判断一个变量的具体类型 的终极方案
    判断变量是否为 NaN
    C#稳固基础:传统遍历与迭代器
  • 原文地址:https://www.cnblogs.com/qingyunzong/p/8890483.html
Copyright © 2020-2023  润新知